Two-Loop Effective Theory Analysis of $\pi(K) \rightarrow e \bar{\nu}_e[\gamma]$ Branching Ratios

Vincenzo Cirigliano¹ and Ignasi Rosell²

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos New Mexico 87544, USA

²Departamento de Ciencias Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera,

San Bartolomé 55, E-46115 Alfara del Patriarca, València, Spain

(Received 30 July 2007; published 6 December 2007)

We study the ratios $R_{e/\mu}^{(P)} \equiv \Gamma(P \to e \bar{\nu}_e[\gamma]) / \Gamma(P \to \mu \bar{\nu}_\mu[\gamma])$ $(P = \pi, K)$ in Chiral Perturbation Theory to order $e^2 p^4$. We complement the two-loop effective theory results with a matching calculation of the counterterm, finding $R_{e/\mu}^{(\pi)} = (1.2352 \pm 0.0001) \times 10^{-4}$ and $R_{e/\mu}^{(K)} = (2.477 \pm 0.001) \times 10^{-5}$.

DOI: 10.1103/PhysRevLett.99.231801

PACS numbers: 13.40.Ks, 12.15.Lk, 13.20.Cz, 13.20.Eb

Introduction.—The ratio $R_{e/\mu}^{(P)} \equiv \Gamma(P \rightarrow e \bar{\nu}_e[\gamma]) / \Gamma(P \rightarrow e \bar$ $\mu \bar{\nu}_{\mu}[\gamma]$ $(P = \pi, K)$ is helicity suppressed in the Standard Model (SM), due to the V - A structure of charged current couplings. It is therefore a sensitive probe of all SM extensions that induce pseudoscalar currents and nonuniversal corrections to the lepton couplings [1], such as the minimal supersymmetric SM [2]. Effects from weak-scale new physics are expected in the range $(\Delta R_{e/\mu})/R_{e/\mu} \sim$ 10^{-4} - 10^{-2} , and there is a realistic chance to detect or constrain them because: (i) ongoing experimental searches plan to reach a fractional uncertainty of $(\Delta R_{e/\mu}^{(\pi)})/R_{e/\mu\sim}^{(\pi)<}5 \times 10^{-4}$ [3] and $(\Delta R_{e/\mu}^{(K)})/R_{e/\mu\sim}^{(K)<}3 \times 10^{-3}$ [4], which represent, respectively, a factor of 5 and 10 improvement over current errors [5]. (ii) The SM theoretical uncertainty can be pushed below this level, since to a first approximation the strong interaction dynamics cancels out in the ratio $R_{e/\mu}$ and hadronic structure dependence appears only through electroweak corrections. Indeed, the most recent theoretical predictions read $R_{e/\mu}^{(\pi)} = (1.2352 \pm$ $0.0005) \times 10^{-4}$ [6], $R_{e/\mu}^{(\pi)} = (1.2354 \pm 0.0002) \times 10^{-4}$ [7], and $R_{e/\mu}^{(K)} = (2.472 \pm 0.001) \times 10^{-5}$ [7]. The authors of Ref. [6] provide a general parameterization of the hadronic effects and estimate the induced uncertainty via dimensional analysis. On the other hand, in Ref. [7], the hadronic component is calculated by modeling the lowand intermediate-momentum region of the loops involving virtual photons.

With the aim to improve the existing theoretical status, we have analyzed $R_{e/\mu}$ within Chiral Perturbation Theory (ChPT), the low-energy effective field theory (EFT) of QCD. The key feature of this framework is that it provides a controlled expansion of the amplitudes in terms of the masses of pseudoscalar mesons and charged leptons ($p \sim m_{\pi,K,\ell}/\Lambda_{\chi}$, with $\Lambda_{\chi} \sim 4\pi F_{\pi} \sim 1.2$ GeV), and the electromagnetic coupling (*e*). Electromagnetic corrections to (semi)-leptonic decays of *K* and π have been worked out to $O(e^2p^2)$ [8,9], but had never been pushed to $O(e^2p^4)$, as required for $R_{e/\mu}$. In this Letter, we report the results of our analysis of $R_{e/\mu}$ to $O(e^2p^4)$, deferring the full details to a separate publication [10]. To the order we work, $R_{e/\mu}$

features both model independent double chiral logarithms (previously neglected) and an *a priori* unknown lowenergy coupling (LEC), which we estimate by means of a matching calculation in large- N_C QCD. The inclusion of both effects allows us to further reduce the theoretical uncertainty and to put its estimate on more solid ground.

Within the chiral power counting, $R_{e/\mu}$ is written as

$$R_{e/\mu}^{(P)} = R_{e/\mu}^{(0),(P)} \left[1 + \Delta_{e^2 p^2}^{(P)} + \Delta_{e^2 p^4}^{(P)} + \Delta_{e^2 p^6}^{(P)} + \dots \right] \quad (1)$$

$$R_{e/\mu}^{(0),(P)} = \frac{m_e^2}{m_\mu^2} \left(\frac{m_P^2 - m_e^2}{m_P^2 - m_\mu^2}\right)^2.$$
 (2)

The leading electromagnetic correction $\Delta_{e^2p^2}^{(P)}$ corresponds to the pointlike approximation for pion and kaon, and its expression is well known [6,11]. Neglecting terms of order $(m_e/m_p)^2$, the most general parameterization of the nextto-leading order (NLO) ChPT contribution can be written in the form

$$\Delta_{e^2 p^4}^{(P)} = \frac{\alpha}{\pi} \frac{m_{\mu}^2}{m_{\rho}^2} \left(c_2^{(P)} \log \frac{m_{\rho}^2}{m_{\mu}^2} + c_3^{(P)} + c_4^{(P)}(m_{\mu}/m_P) \right) + \frac{\alpha}{\pi} \frac{m_{\rho}^2}{m_{\rho}^2} \tilde{c}_2^{(P)} \log \frac{m_{\mu}^2}{m_e^2},$$
(3)

which highlights the dependence on lepton masses. The dimensionless constants $c_{2,3}^{(P)}$ do not depend on the lepton mass but depend logarithmically on hadronic masses, while $c_4^{(P)}(m_\mu/m_P) \rightarrow 0$ as $m_\mu \rightarrow 0$. (Note that our $c_{2,3}^{(\pi)}$ do not coincide with $C_{2,3}$ of Ref. [6] because their C_3 is not constrained to be m_ℓ -independent.) Finally, depending on the treatment of real photon emission, one has to include in $R_{e/\mu}$ terms arising from the structure dependent contribution to $P \rightarrow e \bar{\nu}_e \gamma$ [12] that are formally of $O(e^2 p^6)$, but are not helicity suppressed and behave as $\Delta_{e^2p^6} \sim \alpha/\pi (m_P/m_\rho)^4 (m_P/m_e)^2$.

The calculation.—In order to calculate the various coefficients $c_i^{(P)}$ within ChPT to $O(e^2p^4)$, one has to consider (i) two-loop graphs with vertices from the lowest order effective Lagrangian $[O(p^2)]$; (ii) one-loop graphs with one insertion from the NLO Lagrangian [13] $[O(p^4)]$; (iii) tree-level diagrams with insertion of a local counterterm of $O(e^2p^4)$. In Fig. 1, we show all the relevant oneand two-loop 1PI topologies contributing to $R_{e/\mu}$. Note that all diagrams in which the virtual photon does not connect to the charged lepton line have a trivial dependence on the lepton mass and drop when taking the ratio of e and μ rates. We work in Feynman gauge and use dimensional regularization to deal with ultraviolet (UV) divergences.

By suitably grouping the 1PI graphs of Fig. 1 with external leg corrections, it is possible to show [10]

that the effect of the $O(e^2p^4)$ diagrams amounts to: (i) a renormalization of the meson mass m_P and decay constant F_P in the one-loop result $\Delta_{e^2p^2}^{(P)}$; (ii) a genuine shift to the invariant amplitude $T_{\ell} \equiv T(P^+(p) \rightarrow \ell^+(p_{\ell})\nu_{\ell}(p_{\nu}))$. This correction can be expressed as the convolution of a known kernel with the vertex function $\mathcal{T}_{\mu\nu} = 1/(\sqrt{2}F) \times \int dx e^{iqx+iWy} \langle 0|T[J_{\mu}^{\text{EM}}(x)(V_{\nu} - A_{\nu})(y)]|\pi^+(p)\rangle$ [with $V_{\mu}(A_{\mu}) = \bar{u}\gamma_{\mu}(\gamma_5)d$], once the Born term has been subtracted from the latter. Explicitly, in the case of pion decay, one has $(W = p - q, \epsilon_{0123} = +1)$

$$\delta T_{\ell}^{e^2 p^4} = 2G_F V_{ud}^* e^2 F \int \frac{d^d q}{(2\pi)^d} \frac{\bar{u}_L(p_{\nu})\gamma^{\nu} [-(\not p_l - \not q) + m_{\ell}]\gamma^{\mu} \upsilon(p_{\ell})}{[q^2 - 2q \cdot p_{\ell} + i\epsilon][q^2 - m_{\gamma}^2 + i\epsilon]} \mathcal{T}_{\mu\nu}(p,q) \tag{4}$$

$$\mathcal{T}^{\mu\nu}(p,q) = iV_1(q^2, W^2) \epsilon^{\mu\nu\alpha\beta} q_\alpha p_\beta - A_1(q^2, W^2)(q \cdot pg^{\mu\nu} - p^\mu q^\nu) - [A_2(q^2, W^2) - A_1(q^2, W^2)](q^2 g^{\mu\nu} - q^\mu q^\nu) \\ + \left[\frac{(2p-q)^\mu (p-q)^\nu}{2p \cdot q - q^2} - \frac{q^\mu (p-q)^\nu}{q^2}\right] [F_V^{\pi\pi}(q^2) - 1].$$
(5)

To the order we work, the form factors $V_1(q^2, W^2)$, $A_i(q^2, W^2)$, and $F_V^{\pi\pi}(q^2)$ have to be evaluated to $O(p^4)$ in ChPT in *d*-dimensions. Their expressions are well known for d = 4 [12] and have been generalized to any *d* [10]. So the relevant $O(e^2p^4)$ amplitude is obtained by calculating a set of one-loop diagrams with effective local (V_1 and A_1) and nonlocal (A_2 and $F_V^{\pi\pi}$) $O(p^4)$ vertices. The final result can be expressed in terms of one-dimensional integrals [10].

While $c_{2,4}^{(P)}$ and $\tilde{c}_2^{(P)}$ are parameter-free predictions of ChPT (they depend only on $m_{\pi,K}$, F_{π} , and the LECs $L_{9,10}$ determined in other processes [13]), $c_3^{(P)}$ contains an ultraviolet (UV) divergence, indicating the need to introduce in the effective theory a local operator of $O(e^2 p^4)$, with an associated LEC. The physical origin of the UV

FIG. 1. One- and two-loop 1PI topologies contributing to $R_{e/\mu}$ to order $e^2 p^4$. Dashed lines represent pseudoscalar mesons, solid lines fermions and wavy lines photons. Shaded squares indicate vertices from the $O(p^4)$ effective Lagrangian.

divergence is clear: when calculating $\delta T_{\ell}^{e^2 p^4}$ in the EFT approach, we use the $O(p^4)$ ChPT representation of the form factors appearing in Eq. (5) ($\mathcal{T}_{\mu\nu} \rightarrow \mathcal{T}_{\mu\nu}^{\text{ChPT}}$). While this representation is valid at scales below m_{ρ} (and generates the correct single- and double-logs upon integration in $d^d q$), it leads to the incorrect UV behavior of the integrand in Eq. (4), which is instead dictated by the Operator Product Expansion (OPE) for the $\langle VVP \rangle$ and $\langle VAP \rangle$ correlators. So in order to estimate the finite local contribution (dominated by the UV region), we need a QCD representation of the correlators valid for momenta beyond the chiral regime ($\mathcal{T}_{\mu\nu} \rightarrow \mathcal{T}^{\text{QCD}}_{\mu\nu}$). This program is feasible only within an approximation scheme to QCD. We have used a truncated version of large- N_C QCD, in which the correlators are approximated by meromorphic functions, representing the exchange of a *finite* number of narrow resonances, whose couplings are fixed by requiring that the vertex functions $\langle \pi | VA | 0 \rangle$ and $\langle \pi | VV | 0 \rangle$ obey the leading and next-to-leading OPE behavior at large q [14]. This procedure allows us to obtain a simple analytic form for the local coupling [see Eq. (10)]. *Results.*—The results for $c_{2,3,4}^{(P)}$ and $\tilde{c}_2^{(P)}$ depend on the

Results.—The results for $c_{2,3,4}^{(P)}$ and $\tilde{c}_{2}^{(P)}$ depend on the definition of the inclusive rate $\Gamma(P \rightarrow \ell \bar{\nu}_{\ell}[\gamma])$. The radiative amplitude is the sum of the inner bremsstrahlung component $(T_{\rm IB})$ of O(ep) and a structure dependent component $(T_{\rm SD})$ of $O(ep^3)$ [12]. The experimental definition of $R_{e/\mu}^{(\pi)}$ is fully inclusive on the radiative mode, so that $\Delta_{e^2p^4}^{(\pi)}$ receives a contribution from the interference of $T_{\rm IB}$ and $T_{\rm SD}$, and one also has to include the effect of $\Delta_{e^2p^6}^{(\pi)} \propto |T_{\rm SD}|^2$. The usual experimental definition of $R_{e/\mu}^{(K)}$ corresponds to including the effect of $T_{\rm IB}$ in $\Delta_{e^2p^2}^{(K)}$ (dominated by soft photons) and excluding altogether the effect of $T_{\rm SD}$; consequently, $c_n^{(\pi)} \neq c_n^{(K)}$.

Results for $R_{e/\mu}^{(\pi)}$ —Defining $\bar{L}_9 \equiv (4\pi)^2 L_9^r(\mu)$, $\ell_P \equiv \log(m_P^2/\mu^2)$ (μ is the chiral renormalization scale), $\gamma \equiv A_1(0,0)/V_1(0,0)$, $z_\ell \equiv (m_\ell/m_\pi)^2$, we find

$$c_2^{(\pi)} = \frac{2}{3} m_\rho^2 \langle r^2 \rangle_V^{(\pi)} + 3(1-\gamma) \frac{m_\rho^2}{(4\pi F)^2} \qquad \tilde{c}_2^{(\pi)} = 0 \quad (6)$$

$$c_{3}^{(\pi)} = -\frac{m_{\rho}^{2}}{(4\pi F)^{2}} \left[\frac{31}{24} - \gamma + 4\bar{L}_{9} + \left(\frac{23}{36} - 2\bar{L}_{9} + \frac{1}{12}\ell_{K} \right) \ell_{\pi} \right. \\ \left. + \frac{5}{12}\ell_{\pi}^{2} + \frac{5}{18}\ell_{K} + \frac{1}{8}\ell_{K}^{2} + \left(\frac{5}{3} - \frac{2}{3}\gamma \right) \log \frac{m_{\rho}^{2}}{m_{\pi}^{2}} \right. \\ \left. + \left(2 + 2\kappa^{(\pi)} - \frac{7}{3}\gamma \right) \log \frac{m_{\rho}^{2}}{\mu^{2}} + K^{(\pi)}(0) \right] + c_{3}^{CT}(\mu)$$
(7)

$$c_{4}^{(\pi)}(m_{\ell}) = -\frac{m_{\rho}^{2}}{(4\pi F)^{2}} \left\{ \frac{z_{\ell}}{3(1-z_{\ell})^{2}} \times \left[(4(1-z_{\ell}) + (9-5z_{\ell})\log z_{\ell}) + 2\gamma(1-z_{\ell} + z_{\ell}\log z_{\ell}) \right] + \left(\kappa^{(\pi)} + \frac{1}{3} \right) \frac{z_{\ell}}{2(1-z_{\ell})} \log z_{\ell} + K^{(\pi)}(z_{\ell}) - K^{(\pi)}(0) \right\}$$
(8)

where $\kappa^{(\pi)}$ is related to the $O(p^4)$ pion charge radius by

$$\kappa^{(\pi)} \equiv 4\bar{L}_9 - \frac{1}{6}\ell_K - \frac{1}{3}\ell_\pi - \frac{1}{2} = \frac{(4\pi F)^2}{3}\langle r^2 \rangle_V^{(\pi)}.$$
 (9)

The function $K^{(\pi)}(z_{\ell})$, whose expression will be given in Ref. [10], does not contain any large logarithms and gives a small fractional contribution to $c_{34}^{(\pi)}$.

As anticipated, $c_2^{(\pi)}$ is a parameter-free prediction of ChPT. Moreover, we find $\tilde{c}_2^{(\pi)} = 0$, as expected due to a cancellation of real- and virtual-photon effects [15]. Finally, $c_3^{(\pi)}$ encodes calculable chiral corrections [as does $c_4(m_\ell)$] and a local counterterm $c_3^{CT}(\mu)$, for which our matching procedure [10] gives ($z_A \equiv m_{a_1}/m_{\rho}$)

$$c_{3}^{CT}(\mu) = -\frac{19m_{\rho}^{2}}{9(4\pi F)^{2}} + \left(\frac{4m_{\rho}^{2}}{3(4\pi F)^{2}} + \frac{7+11z_{A}^{2}}{6z_{A}^{2}}\right)\log\frac{m_{\rho}^{2}}{\mu^{2}} + \frac{37-31z_{A}^{2}+17z_{A}^{4}-11z_{A}^{6}}{36z_{A}^{2}(1-z_{A}^{2})^{2}} - \frac{7-5z_{A}^{2}-z_{A}^{4}+z_{A}^{6}}{3z_{A}^{2}(-1+z_{A}^{2})^{3}}\log z_{A}.$$
(10)

Numerically, using $z_A = \sqrt{2}$, we find $c_3^{CT}(m_\rho) = -1.61$, implying that the counterterm induces a subleading correction to c_3 (see Table I). The scale dependence of $c_3^{CT}(\mu)$ partially cancels the scale dependence of the chiral loops (our procedure captures all the "single-log" scale dependence). Taking a very conservative attitude, we assign to c_3 an uncertainty equal to 100% of the local contribution $(|\Delta c_3| \sim 1.6)$ plus the effect of residual renormalization scale dependence, obtained by varying the scale μ in the range $0.5 \rightarrow 1$ GeV ($|\Delta c_3| \sim 0.7$), leading to $\Delta c_3^{(\pi,K)} = \pm 2.3$. Full numerical values of $c_{2,3,4}^{(\pi)}$ are reported in Table I, with uncertainties due to matching procedure and input parameters (L_9 and γ [16]).

As a check on our calculation, we have verified that if we neglect c_3^{CT} and pure two-loop effects, and if we use $L_9 = F^2/(2m_\rho^2)$ (vector meson dominance), our results for $c_{2,3,4}^{(\pi)}$ are fully consistent with previous analyses of the leading structure dependent corrections based on current algebra [6,17]. Moreover, our numerical value of $\Delta_{e^2p^4}^{(\pi)}$ reported in Table II is very close to the corresponding result in Ref. [6], $\Delta_{e^2p^4}^{(\pi)} = (0.054 \pm 0.044) \times 10^{-2}$.

For completeness, we report here the contribution to $\Delta_{e^2n^6}^{(\pi)}$ induced by structure dependent radiation:

$$\Delta_{e^2 p^6}^{(\pi)} = \frac{\alpha}{2\pi} \frac{m_{\pi}^4}{(4\pi F)^4} (1+\gamma^2) \left[\frac{1}{30z_e} - \frac{11}{60} + \frac{z_e}{20(1-z_e)^2} \right] \times (12 - 3z_e - 10z_e^2 + z_e^3 + 20z_e \log z_e) \left].$$
(11)

Results for $R_{e/\mu}^{(K)}$.—In this case, we have

$$c_2^{(K)} = \frac{2}{3} m_\rho^2 \langle r^2 \rangle_V^{(K)} + \frac{4}{3} \left(1 - \frac{7}{4} \gamma \right) \frac{m_\rho^2}{(4\pi F)^2}$$
(12)

$$\tilde{c}_{2}^{(K)} = \frac{1}{3}(1-\gamma)\frac{m_{\rho}^{2}}{(4\pi F)^{2}}$$
(13)

where $\langle r^2 \rangle_V^{(K)}$ is the $O(p^4)$ kaon charge radius. $c_3^{(K)}$ is obtained from $c_3^{(\pi)}$ by replacing $31/24 - \gamma \rightarrow -7/72 - 13/9\gamma$, by dropping the term proportional to $\log m_\rho^2/m_\pi^2$, and by interchanging everywhere else the label π with K (masses, $\ell_\pi \rightarrow \ell_K$, etc.). $c_4^{(K)}$ is obtained from $c_4^{(\pi)}$ by keeping only the fourth and fifth lines of Eq. (8) and interchanging the labels π and K. The numerical values of $c_{2,3,4}^{(K)}$ and $\tilde{c}_2^{(K)}$ are reported in Table I.

Resumming leading logarithms.—At the level of uncertainty considered, one needs to include higher order long distance corrections to the leading contribution $\Delta_{e^2p^2} \sim -3\alpha/\pi \log m_{\mu}/m_e \sim -3.7\%$. The leading logarithms can

TABLE I. Numerical values of the coefficients $c_n^{(P)}$ of Eq. (3) $(P = \pi, K)$. The uncertainties correspond to the input values $L_9^r(\mu = m_\rho) = (6.9 \pm 0.7) \times 10^{-3}, \ \gamma = 0.465 \pm 0.005$ [16], and to the matching procedure (m), affecting only $c_3^{(P)}$.

	$(P = \pi)$	(P=K)
$\tilde{c}_2^{(P)}$	0	$(7.84 \pm 0.07_{\gamma}) \times 10^{-2}$
$c_{2}^{(P)}$	$5.2 \pm 0.4_{L_9} \pm 0.01_{\gamma}$	$4.3 \pm 0.4_{L_9} \pm 0.01_{\gamma}$
$c_{3}^{(P)}$	$-10.5 \pm 2.3_m \pm 0.53_{L_9}$	$-4.73 \pm 2.3_m \pm 0.28_{L_9}$
$c_4^{(P)}(m_\mu)$	$1.69 \pm 0.07_{L_9}$	$0.22 \pm 0.01_{L_9}$

TABLE II. Numerical summary of various electroweak corrections to $R_{e/\mu}^{(\pi,K)}$.

	$(P = \pi)$	(P=K)
$\Delta^{(P)}_{e^2p^2}$ (%)	-3.929	-3.786
$\Delta^{(P)}_{e^2p^4}$ (%)	0.053 ± 0.011	0.135 ± 0.011
$\Delta^{(P)}_{e^2p^6}$ (%)	0.073	
Δ_{LL} (%)	0.055	0.055

be summed via the renormalization group and their effect amounts to multiplying $R_{e/\mu}^{(P)}$ by [6]

$$1 + \Delta_{LL} = \frac{\left(1 - \frac{2}{3}\frac{\alpha}{\pi}\log\frac{m_{\mu}}{m_{e}}\right)^{9/2}}{1 - \frac{3\alpha}{\pi}\log\frac{m_{\mu}}{m_{e}}} = 1.00055.$$
 (14)

Conclusions.—In Table II, we summarize the various corrections to $R_{e/\mu}^{(\pi,K)}$, which lead to our final results:

$$R_{e/\mu}^{(\pi)} = (1.2352 \pm 0.0001) \times 10^{-4}$$
(15)

$$R_{e/\mu}^{(K)} = (2.477 \pm 0.001) \times 10^{-5}.$$
 (16)

In the case of $R_{e/\mu}^{(K)}$, we have inflated the nominal uncertainty arising from matching by a factor of 4, to account for higher order chiral corrections of expected size $\Delta_{e^2p^4}m_K^2/(4\pi F)^2$. The analogous corrections to $R_{e/\mu}^{(\pi)}$ scale like $\Delta_{e^2p^4}m_{\pi}^2/(4\pi F)^2$ and are negligible. Our results have to be compared with the ones of Refs. [6,7] reported in the introduction. While $R_{e/\mu}^{(\pi)}$ is in good agreement with both previous results, there is a discrepancy in $R_{e/\mu}^{(K)}$ that goes well outside the estimated theoretical uncertainties. We have traced back this difference to the following problems in Ref. [7]: (i) the leading log correction Δ_{LL} is included with the wrong sign (this accounts for half of the discrepancy); (ii) the NLO virtual correction $\Delta_{e^2p^4}^{(K)} = 0.058\%$ is not reliable because the hadronic form factors modeled in Ref. [7] do not satisfy the QCD short-distance behavior.

In conclusion, by performing an analysis to $O(e^2 p^4)$ in ChPT, we have improved the reliability of both the central value and the uncertainty of the ratios $R_{e/\mu}^{(\pi,K)}$. Our final

result for $R_{e/\mu}^{(\pi)}$ is consistent with the previous literature, while we find a discrepancy in $R_{e/\mu}^{(K)}$, which we have traced back to inconsistencies in the analysis of Ref. [7]. Our results provide a clean basis to detect or constrain non-standard physics in these channels by comparison with upcoming measurements.

We wish to thank M. Ramsey-Musolf for collaboration at an early stage of this work, D. Pocanic and M. Bychkov for correspondence on the experimental input on γ , and W. Marciano and A. Sirlin for crosschecks on parts of our calculation. This work has been supported in part by the EU No. MRTN-CT-2006-035482 (FLAVIAnet), by MEC (Spain) under Grant No. FPA2004-00996 and by Generalitat Valenciana under Grant No. GVACOMP2007-156.

- D. A. Bryman, Comments Nucl. Part. Phys. 21, 101 (1993).
- [2] A. Masiero *et al.*, Phys. Rev. D 74, 011701(R) (2006);
 M. J. Ramsey-Musolf *et al.*, arXiv:0705.0028.
- [3] PEN, PSI exp. proposal R-05-01, 2006; PIENU, TRIUMF exp. proposal 1072, D. Bryman and T. Numao, spokespersons (2006).
- [4] R. Wanke, arXiv:0707.2289.
- [5] D. I. Britton *et al.*, Phys. Rev. Lett. **68**, 3000 (1992); Phys. Rev. D **49**, 28 (1994); G. Czapek *et al.*, Phys. Rev. Lett. **70**, 17 (1993).
- [6] W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 71, 3629 (1993).
- [7] M. Finkemeier, Phys. Lett. B 387, 391 (1996).
- [8] M. Knecht et al., Eur. Phys. J. C 12, 469 (2000).
- [9] V. Cirigliano *et al.*, Eur. Phys. J. C 23, 121 (2002); Eur. Phys. J. C 27, 255 (2003); Eur. Phys. J. C 35, 53 (2004).
- [10] V. Cirigliano and I. Rosell, J. High Energy Phys. 10, 005 (2007).
- [11] T. Kinoshita, Phys. Rev. Lett. 2, 477 (1959).
- [12] J. Bijnens et al., Nucl. Phys. B 396, 81 (1993).
- [13] J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).
- B. Moussallam, Nucl. Phys. B 504, 381 (1997); M. Knecht and A. Nyffeler, Eur. Phys. J. C 21, 659 (2001);
 V. Cirigliano *et al.*, Phys. Lett. B 596, 96 (2004).
- [15] W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 36, 1425 (1976).
- [16] M. Bychkov and D. Pocanic (private communication).
- [17] M. V. Terentev, Yad. Fiz. 18, 870 (1973).