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Abstract

We study the radiative pion decay of π+ → e+νeγ in the light front quark model (LFQM). We

also summarize the result in the chiral perturbation theory. The vector and axial-vector hadronic

form factors (FV,A) for the π → γ transition are evaluated in the whole allowed momentum transfer.

In terms of these momentum dependent form factors, we calculate the decay branching ratio and

compare our results with the experimental data and other theoretical predictions in the literature.

We also constrain the possible size of the tensor interaction in the LFQM.
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I. INTRODUCTION

The light pesudoscalar decays have been playing important roles of understanding the

standard model (SM). In particular, the radiative pion decay of π+ → e+νeγ (πe2γ) is an

interesting process, which can be used to test the V − A structure of the weak interaction

and search for some anomalous interactions beyond the SM. The decay consists of two

types of contributions, referred as internal-bremsstrahlung (IB) and structure-dependent

(SD) in terms of the emission of the photons, respectively. The IB contribution to the

decay amplitude (MIB) is helicity suppressed like the πe2 decay as the photon radiates from

the external electron, while the SD one (MSD), depending on vector and axial-vector weak

hadronic currents, is proportional to the electromagnetic coupling constant α but free of the

helicity suppression. One can parametrize MSD by the vector and axial-vector form factors,

denote as FV and FA, respectively.

The decay of π+ → e+νeγ has been measured with the branching ratio of (1.61±
0.23)×10−7 for the cuts of Eγ > 21 MeV and Ee > 70 − 0.8Eγ by the ISTRA experi-

ment [1, 2]. Recently, a more precise measurement on the decay branching ratio has been

given by the PIBETA Collaboration [3, 4], with the decay branching ratios in various kine-

matic regions. In particular, for the cuts of Ee > 0.5 MeV and Eγ > 10 MeV with the

relative angle θeγ > 400, the decay branching ratio is (73.86 ± 0.54) × 10−8 [4]. The new

ongoing PEN experiment at PSI will at least double the PIBETA data set [5], resulting in

further improvements in precision [6]. In addition, there is another ongoing new experiment,

PIENU, at TRIUMF [7] with a similar sensitivity as the PEN experiment.

Theoretical calculations on FV,A as well as the decay branching ratio in the SM have

been done in various QCD models [11–17]. In particular, the decay branching ratio with

the same cuts as those by ISTRA [1, 2] and PIBETA [4] is found to be 2.55×10−7 and

76.66×10−8 in the chiral perturbation theory (ChPT) at O(p6) [8–10], which are larger the

data shown above, respectively. As a result, it may be necessary to consider some new types

of interactions, such as tensor interactions [1, 11–15]. It is clear that these tensor interactions

are undoubtedly signals of new physics. On the other hand, it is important if we can obtain

information on FV,A in some QCD models other than the ChPT. For this purpose, in this

study we will evaluate FV,A in the light front quark model (LFQM) [18, 19]. We will use the

form factors in both ChPT and LFQM to examine the decay of π+ → e+νeγ. In addition,
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we will examine the new physics effect due to the tensor interactions.

This paper is organized as follows. In Sec. II, we summarize the form factors in the π → γ

transition within the ChPT and LFQM. In Sec. III, we calculate the decay branching ratio

of π+ → e+νeγ in these models. We also compare our results with the experimental data

and other theoretical predictions in the literature. We give our conclusions in Sec. IV.

II. THE FORM FACTORS

A. Vector and Axial-vector Form Factors

The decay amplitude for π+ → e+νeγ can be written as: [20, 21]

M = MIB +MSD ,

MIB = ie
GF√
2
Vudfπmeǫ

∗

µ ū(pe)(1− γ5)

(

pµπ
pπ · q

− 2pµe+ 6qγµ

2pe · q

)

v(pν) ,

MSD = −i
GF√
2
Vudǫ

∗

µū(pe)γα(1− γ5)v(pν)

[

e
FA

mπ
(−gµαpπ · q + pµπq

α) + ie
FV

mπ
ǫµαβλqβpπλ

]

,(1)

where ǫα is the photon polarization vector, pπ, pe, pν , and q are the four momenta of π+, e+,

ν and γ, and fπ and FA,V are the π meson decay constant and the axial-vector and vector

form factors, defined by

〈 0|s̄γµγ5u|π+(pπ) 〉 = ifπp
µ
π,

〈γ(q)|ūγµγ5d|π(pπ) 〉 = e
FA

mπ

[

(p · q)ǫ∗µ − (ǫ∗ · p)qµ
]

,

〈γ(q)|ūγµd|π(pπ) 〉 = ie
FV

mπ

εµαβνǫ∗αqβpν , (2)

respectively, with p = pπ − q being the transfer momentum. Obviously, MIB has a suppres-

sion factor of me. The physically accessible kinematics region is 0 ≤ p2 ≤ p2max = m2
π due to

the time-like momentum transfers. In the following discussion, we will first summarize the

formulas for FV,A in the ChPT [9, 10] and then evaluate these form factors in the LFQM. We

note that similar calculations for the P → γ (P = K+, K0, D,B) transitions in the LFQM

have been performed in Refs. [22–24].
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1. Chiral Perturbation Theory

The tree and loop contributions to FV,A in the ChPT at O(p6) for the πe2γ decay have

been calculated in Refs. [9, 10]. The explicit forms can be summarized as [22]

FV (p
2) =

mπ

4
√
2 π2Fπ

{

1− 256

3
π2m2

KC
r
7 +

64

3
π2p2Cr

22

− 1

8π2F 2
π

[

m2
π ln

(

m2
π

µ2

)

+m2
K ln

(

m2
K

µ2

)

−
∫

[

m2
K − x(1− x)p2

]

ln

(

m2
K − x(1 − x)p2

µ2

)

dx

−
∫

[

m2
π − x(1− x)p2

]

ln

(

m2
π − x(1− x)p2

µ2

)

dx

]}

, (3)

and

FA(p
2) =

4
√
2mπ

Fπ

(Lr
9 + Lr

10)−
mπ

6F 3
π (2π)

8
[22.25 (m2

π − p2) + 193.4]

− mπ

2
√
2π2F 3

π

{

(Lr
3 + 2Lr

9 + 2Lr
10)m

2
K ln

(m2
K

m2
ρ

)

+ 2 (2Lr
1 − Lr

2 + Lr
3 + 2Lr

9 + 2Lr
10)m

2
π ln

(m2
π

m2
ρ

)

}

− 4
√
2mπ

F 3
π

{

4m2
K(6y

r
18 − 2yr82 + yr84 + 2yr103)

+ 2m2
π(6y

r
17 + 6yr18 − 2yr81 − 2yr82 + 2yr83 + yr84 + yr85 − yr100 + 2yr102

+ 2yr103 − 2yr104 + yr109) +
1

2
(m2

π − p2)(2yr100 − 4yr109 + yr110)

}

, (4)

where the wave function and decay constant (Fπ ≡ fπ/
√
2) renormalizations have been in-

cluded and Cr
i , L

r
i and yri are the renormalized coupling constants. Note that the first terms

in Eqs. (3) and (4) correspond to FV and FA at O(p4) [8, 25], respectively. To get the numer-

ical results for the form factors, we take mK = 0.495 GeV, mπ = 0.14 GeV and mρ = 0.77

GeV, Fπ = 0.092 GeV and the renormalized coefficients of (Lr
1, L

r
2, L

r
3, L

r
9, L

r
10), (C

r
7 , C

r
22) and

(yr100, y
r
104, y

r
109, y

r
110) to be (0.53, 0.71,−2.72, 6.9,−5.5)×10−3 [26], (0.013, 6.52)×10−3GeV −2

[27] and (1.09,−0.36, 0.40,−0.52)× 10−4/F 2
π [28], respectively. For some other possible sets

of coefficients, see Ref. [10] as well as the recent review in Ref. [29]. Note that the uncer-

tainties for the renormalized coupling constants are not considered in this study.
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2. Light Front Quark Model

In the light front (LF) approach, the general structure of the phenomenological LF meson

wave function is based only on the Qq̄ Fock space sector [22]. The pion wave function can

be expressed by an anti-quark q̄ and a quark Q with the total momentum (p+ q) as:

|π(p+ q) 〉 =
∑

λ1λ2

∫

[dk1][dk2]2(2π)
3δ3(p+ q − k1 − k2)

× Φλ1λ2

π (z, k⊥)b
+
q̄ (k1, λ1)d

+
Q(k2, λ2)|0 〉 , (5)

where Φλ1λ2

π is the amplitude of the corresponding q̄(Q) and k1(2) is the on-mass shell LF

momentum of the internal quark. The LF relative momentum variables (z, k⊥) are defined

by

k+
1 = (1− z)(p + q)+, k+

2 = z(p + q)+ ,

k1⊥ = (1− z)(p + q)⊥ + k⊥, k2⊥ = z(p + q)⊥ − k⊥ , (6)

and

Φλ1λ2

π (z, k⊥) =

(

k+
1 k

+
2

2[M2
0 − (mQ −mq̄)

2]

)
1

2

u (k1, λ1) γ
5v (k2, λ2)φ(z, k⊥) ,

M2
0 =

k2
⊥
+m2

q

1− z
+

k2
⊥
+m2

Q

z
. (7)

where φ(z, k⊥) is the space part of the wave function, which is taken to be a Gaussian type

but it can be solved in principle by the LF QCD bound state equation [24]. At the quark

loop diagram, the hadronic matrix elements in Eq. (2) can be obtained to be

〈γ(q)|ūγµ (1− γ5) d| π(p+ q) 〉 =
∫

d4k1
(2π)4

Λπ

×
{

γ5
i(−k/2 +mu)

k2
2 −m2

u + iǫ
ieuǫ/

∗
i(k/3 +mu)

k2
3 −m2

u + iǫ
γµ(1− γ5)

i(k/1 +md)

k2
1 −m2

d + iǫ

+(u ↔ d , k1 ↔ k2)

}

, (8)

where Λπ is a vertex function related to the quark-antiquark bound state of the π meson,

k2 = q − k3 and k1 = (p + q) − k2 = k3 + p. By integrating over the LF momentum k−

2 in

Eq. (8), we get

〈γ(q)|ūγµ (1− γ5) d| π(p+ q) 〉

=

∫ p+q

p

[d3k1]

{

Λπ

k−

1 − k−

1on

(Iµ|k−
2on

)
1

k−

3 − k−

3on

+ (u ↔ d , k1 ↔ k2)

}

, (9)
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where

[d3k1] =
dk+

1 dk1⊥
2(2π)3k+

1 k
+
2 k

+
3

,

Iµ|k−
2on

= Tr

{

γ5(−k/2 +mu)ieqǫ/
∗(k/3 +mu)γµ(1− γ5)(k/1 +md)

}

,

k−

ion =
m2

i + k2
i⊥

k+
i

, k−

1(2) = p−on − k−

2(1)on , k−

3 = q− − k−

1on , (10)

with {on} representing the on-shell particles. Note that the vertex function Λπ in Eqs. (8)

and (9) include the normalization factor of the wave function and momentum distribution

function, given by [19]:

Λπ

k−

1 − k−

1on

=

√

k+
1 k

+
2√

2 M0

φ(z, k⊥) . (11)

Note that in Eq. (11), we have take mq = mQ, i.e., mu = md for π. To calculate the

matrix element in Eq. (9), we choose a frame with the transverse momentum p⊥ = 0 so

that p2 = p+p− ≥ 0 covers the entire range of the momentum transfers. Here, the relevant

quark momentum variables are

k+
3 = (1− z′)q+, k+

2 = z′q+, k3⊥ = (1− z′)q⊥ + k′

⊥
, k2⊥ = z′q⊥ − k′

⊥
. (12)

By considering the good component as “µ = +”, the hadronic matrix elements in Eq. (2)

can be rewritten as:

〈 0|s̄γ+γ5u|π(p+ q) 〉 = ifπ(p+ q)+ ,

〈γ(q)|ūγ+γ5d|π(p+ q) 〉 = −e
FA

2mπ
(ǫ∗

⊥
· q⊥) p+ ,

〈γ(q)|ūγ+d|π(p+ q) 〉 = −ie
FV

2mπ
ǫijǫ∗i qjp

+ . (13)

Using Eq. (12), the trace part Iµ in Eq. (10) can be carried out. By comparing the last two

equations in Eq. (13) with those in Eq. (9), we derive

FA(p
2) = 4mπ

∫

dz′ d2k⊥
2(2π)3

Φ
(

z, k2
⊥

) 1

1− z

{

1

3

md +Bk2
⊥
Θ

m2
d + k2

⊥

+
2

3

mu −Ak2
⊥
Θ

m2
u + k2

⊥

}

,

FV (p
2) = −4mπ

∫

dz′ d2k⊥

2 (2π)3
Φ
(

z, k2
⊥

) 1

1− z

×
{

1

3

md + (1− z)(md −mu)k
2
⊥
Θ

m2
d + k2

⊥

− 2

3

mu − z (md −mu) k
2
⊥
Θ

m2
u + k2

⊥

}

, (14)
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where

A = z(1 − 2z′)(md −mu)− 2z′mu ,

B = z(1 − 2z′)md +md + (1− 2z′)(1− z)mu ,

Φ(z, k2
⊥
) = 4

(

π

ω2
π

)
3

4

(

z(1 − z)

2[M2
0 − (md −mu)2]

)1/2
√

dkz
dz

exp

(

−
~k2

2ω2
π

)

,

Θ =
1

Φ(z, k2
⊥
)

dΦ(z, k2
⊥
)

dk2
⊥

,

z = z′
(

1− p2

m2
π

)

, ~k = (~k⊥, ~kz) ,

kz =

(

z − 1

2

)

M0 +
m2

d −m2
u

2M0
. (15)

We note that to evaluate the form factors, we have to fix the meson scale parameter ωπ in

the meson wave functions by fitting the meson decay constant, given by [30]

fπ =
√
48

∫

dz d2k⊥
2(2π)3

Φ(z, k⊥)
mu

z(1 − z)
. (16)

B. Tensor Form Factor

The tensor interaction is given by [11, 14]

LT =
GF√
2
sin θcfT ( ū σµνγ5 d ) [ ē σ

µν(1− γ5) νe ] . (17)

The tensor form factor is defined by [14]:

〈γ(q)|ūσµνγ5d|π(pπ) 〉 = −i
eFT

2fT

(

ǫ∗µqν − qµǫ
∗

ν

)

. (18)

For the LF good component of “µ = +”, one rewrites Eq. (18) as

〈γ(q)|ūσ+νγ5d|π(p+ q) 〉 = −i
eFT

2fT
(ǫ∗

⊥
· q⊥) . (19)

At the quark level, the hadronic matrix element in Eq. (18) is found to be

〈γ(q)|ūσµνγ5 d| π(p+ q) 〉 =
∫

d4k′

1

(2π)4
Λπ

{

γ5
i(−k/2 +mu)

k2
2 −m2

u + iǫ
ieuǫ/

∗
i(k/3 +mu)

k2
3 −m2

u + iǫ
σµνγ5

i(k/1 +md)

k2
1 −m2

d + iǫ
+ (u ↔ d, k1 ↔ k2)

}

,(20)

which leads to

〈γ(q)|ūσµ γ5 d| π(p+ q) 〉 =
∫ p+q

p

[d3k1]

{

Λπ

k−

1 − k−

1on

(Iµν |k−
2on

)
1

k−

3 − k−

3on

+ (u ↔ d , k1 ↔ k2)

}

, (21)
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where

Iµν |k−
2on

= Tr

{

γ5(−k/2 +mu)ieqǫ/
∗(k/3 +mu)σµγ5(k/1 +md)

}

. (22)

From Eqs. (19) and (21), we obtain

FT (p
2)

fT
= 2

∫

dz′ d2k⊥

2 (2π)3
Φ
(

z, k2
⊥

)

{

2

3

C1 + C2k
2
⊥
Θ

m2
u + k2

⊥

+
1

3
(md ↔ mu)

}

, (23)

where

C1 =
1

z′z(1 − z)2(1− z′)

{

(1− 2z′ + 2z′2 − z′z)(z′ + z − 2z′z)k2
⊥

+(1− z)mu

[

2z′z(1− z′)md + (z′ + z + 2z′2z − 4z′z)md

]

}

,

C2 =
(z − z′)

z′z(1 − z)2(1− z′)

{

(z′ + z − 2z′z)k2
⊥
+ z2(1− z′)m2

d

−(1 − z)(z′ + z − z′z)m2
u

}

. (24)

At the maximal recoil of p2 = 0, we have

FT (0)

fT
= 4

∫

dz d2k⊥

2 (2π)3
Φ
(

z, k2
⊥

)

{

2

3

(1− z) k2 +mu (z md + (1− z)mu)

z (m2
u + k2

⊥
)

+
1

3
(mu ↔ md)

}

. (25)

C. Numerical results

To compute numerical values of the form factors in the LFQM, the ω parameter in the

light-front wave function is fixed by other hadronic properties. For example, by using the

decay constant of fπ = 130 MeV and the quark masses of mu = md = 250 MeV, we obtain

ωπ = 301 MeV from Eq. (16). We note that this value of ωπ is just a typical one and its

uncertainty mainly arises from those of the light quark masses. The transfer momentum p2

dependences of FV and FA are shown in Figs. 1 and 2, respectively. Note that the behaviors

of the figure’s sharps are independent of the quark masses but the values of FV and FA at

the maximal recoil of p2 = 0 can be quite different as shown in Table I. The results in

Table I also illustrate the main uncertainty from the quark masses. In Figs. 1 and 2, we

have also included the experimental results fitted by the forms of FV (p
2) = FV (1 + αp2)
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and FA(p
2) = FA(0) with a constant parameter of α [4], while in Table. I, we list the values

of FA,V (0) in the ChPT and those from the data. We remark that the numerical values of

the form factors at p2 = 0 for the pion case between the theoretical models seem to be less

compatible comparing with those for the kaon in Ref. [10] in which the strange quark mass

also enters. To illustrate the quark mass effects on the form factors in the LFQM, in Figs. 3

and 4 we plot three different sets of quark masses including the one in Figs. 1 and 2. It is

clear that both FV,A decrease as mu,d increase.

0.000 0.005 0.010 0.015 0.020
0.000

0.005

0.010

0.015

0.020

0.025

0.030

F V

p2 ( GeV2 )

 ChPT O(p4)
 ChPT O(p6)
 LFQM
 Exp. Data fit

FIG. 1. FV (p
2) as a function of the transfer momentum p2 with mu = md = 250 MeV.

0.000 0.005 0.010 0.015 0.020
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

F A

p2 ( GeV2 )

 ChPT O(p4)
 ChPT O(p6)
 LFQM
 Exp. Data fit

FIG. 2. Same as Fig. 1 but for FV (p
2).
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0.000 0.005 0.010 0.015 0.020
0.000

0.005

0.010

0.015

0.020

0.025

0.030

F V

p2 ( GeV2 )

 m
u
=230 MeV

 m
u
=250 MeV

 m
u
=270 MeV

FIG. 3. FV (p
2) in the LFQM, where mu = md = 230, 250 and 270 MeV correspond to solid,

long-dashed and short-dashed lines, respectively.

0.000 0.005 0.010 0.015 0.020
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

F A

p2 ( GeV2 )

 m
u
=230 MeV

 m
u
=250 MeV

 m
u
=270 MeV

FIG. 4. Same as Fig. 3 but for FV (p
2).

TABLE I. Values of FA,V (0) in (a) the ChPT at O(p4), (b) the ChPT at O(p6), (ci) the LFQM

with i=1, 2 and 3 for mu,d = 230, 250 and 270 MeV, repectively.

(a) (b) (c1) (c2) (c3) Data [4]

FA(0) 0.0112 0.0102 0.0151 0.0131 0.0113 0.0117(17)

FV (0) 0.0272 0.0272 0.02751 0.0261 0.0243 0.0258(17)
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The tensor form factor Eq. (23) in the whole kinematic region for the LFQM is shown

in Fig. 5. At p2 = 0, we get the FT (0)/fT =0.220, 0.210 and 0.202 for mu,d = 230, 250 and

0.000 0.005 0.010 0.015 0.020
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

F T /
 f T

p2 (GeV2)

FIG. 5. FT (p2)
fT

as a function of the transfer momentum p2.

270 MeV, respectively.

III. DECAY BRANCHING RATIO

In the π+ rest frame, we obtain the double differential decay rate as

d2Γl

dx dy
=

mπ

256π3
|M |2 = α

2π
Br(π → eν)A, (26)

A = AIB(x, y) + ASD(x, y) + AINT (x, y) , (27)

with

AIB(x, y) =
1− λ

λx2

[

x2 + 2(1− re)
(

1− x− re
λ

)]

,

ASD(x, y) =
m4

π(1− λ)

4f 2
πm

2
e

x2

[

|FV + FA|2
λ2

1− λ

(

1− x− re
λ

)

+ |FV − FA|2(y − λ)
]

,

AIN(x, y) = −mπ

fπ

[

Re[(FV + FA)
∗]
(

1− x− re
λ

)

− Re[(FV − FA)
∗]
1− y + λ

λ

]

, (28)
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where x = 2Eγ/mπ, y = 2Ee/mπ, re = m2
e/m

2
π and λ = (x + y − 1 − re)/x. One can

also relate the angle θeγ between the e+ and photon momenta with y and λ. Explicitly, by

neglecting the re, one has that

λ = y sin2

(

θeγ
2

)

. (29)

The physical regions for x and y are given by

0 ≤x≤ 1− re ,

1− x+
re

1− x
≤y≤ 1 + re . (30)

In Table II, we show the decay branching fractions of π± → e±νeγ in terms of the various

contributions in Eq. (28) for fπ = 130 MeV, mπ = 140 GeV [2], mu,d = 250 MeV and

Br(π → eν) = (1.23 ± 0.004) × 10−8 with the cuts of Eγ > 50 MeV and Ee > 50 MeV.

Note that in this kinematic region, the contribution from the SD part dominates the decay

rate, which is sensitive to the V − A structure as well as new physics. We note that the

total branching ratio in the LFQM are 2.937 and 2.320× 10−8 for mu,d = 230 and 270 MeV,

respectively.

TABLE II. Decay branching ratio of π → eνeγ (in units of 10−8) in (a) the ChPT at O(p4), (b) the

ChPT at O(p6) and (c) the LFQM with the cuts of Eγ > 50 MeV and Ee > 50 MeV, respectively.

Model IB SD INT Total

(a) 3.692 × 10−1 2.356 2.536 × 10−3 2.727

(b) 3.692 × 10−1 2.309 2.850 × 10−3 2.679

(c) 3.692 × 10−1 2.250 1.840 × 10−3 2.621

In Table III, we give the decay branching ratio of π → eνeγ in various kinematic energy

regions in (a) the ChPT at O(p4), (b) the ChPT at O(p6), (c) the LFQM, (d) the green

function method [16] and (e) the ChPT with a large NC expansion [17] as well as the data

in Ref. [4]. Here, we have used mu,d = 250 MeV in the LFQM. The errors in the parentheses

of our results in Table III are from the decay of π → eν. However, it should be noted that

large uncertainties could arise from the various normalized coupling constants and the light

quark masses in the ChPT and LFQM, respectively. In Fig. 6, we display the spectrum of

the differential decay branching ratio as a function of x = 2Eγ/mπ in the ChPT at both
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TABLE III. Decay branching ratio of π → eνeγ (in units of 10−8) in (a) the ChPT at O(p4), (b) the

ChPT at O(p6), (ci) the LFQM with i=1, 2 and 3 for mu,d = 230, 250 and 270 MeV, repectively,

(d) the green function method [16] and (e) the ChPT with a large NC expansion [17] as well as

the data in Ref. [4] in various kinematic energy regions (in units of MeV).

Emin
e Emin

γ θmin
eγ Data [4] (a) (b) (c1) (c2) (c3) (d) (e)

50 50 − 2.614(21) 2.727(9) 2.679(9) 2.85(8) 2.62(8) 2.29(8) 2.81(38) 2.58(8)

10 50 400 14.46(22) 15.04(5) 14.99(5) 14.93(37) 14.63(37) 14.19(37) 15.08(58) 14.77(40)

50 10 400 37.69(46) 38.28(13) 38.12(12) 38.29(12) 37.87(12) 37.37(12) 38.4(10) 38.9(9)

0.5 10 400 73.86(54) 76.66(25) 76.31(25) 73.67(22) 73.57(22) 72.58(22) − −

O(p4) and O(p6) and the LFQM. From Table III, we see that the results of the ChPT at
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FIG. 6. Differential decay branching ratio as a function of x = 2Eγ/mπ.

O(p4) and O(p6) are higher than those of the experimental data, which can be understood

from Table I and Eq. (28) since the values of FV−A(0) ≡ FV (0) − FA(0) in the ChPT are

larger than those fitted in the experimental data. Since the result from the LFQM agrees

well with the data [4], it could lead to a strong constraint on new physics. We now examine

the contribution to the decay from the tensor interaction in Eq. (17). From Eqs. (17) and

(18), one obtains the new tensor contribution as

MT = ie
GF√
2
sin θc

(

FT ǫ∗µ qν
) [

l̄ σµν(1− γ5) νl
]

. (31)
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Due to the above tensor interaction, Eq. (27) should be rewritten as follows:

A = AIB(x, y) + ASD(x, y) + AINT (x, y) + ATT (x, y) + AIBT (x, y) + ASDT (x, y) , (32)

where the new terms are given by

ATT (x, y) =
m4

π

f 2
πm

2
e

|FT |2 x2 λ(1− λ) ,

AIBT (x, y) = 2
m2

π

fπme
Re(FT )

(

1 + re − λ− re
λ

)

,

ASDT (x, y) =
m3

π

f 2
πme

Re(FT )(FV − FA) x
2 λ(1− λ) . (33)

Integrating over x and y variables in Eq.(33) and using the form factor in Eq.(23), we get

the tensor related parts of the branching ratio as shown in Table. IV. To evaluate the

TABLE IV. The tensor related parts of the decay branching ratio for π → eνeγ (in units of 10−8)

in the LFQM with the cuts of Eγ > 50 MeV and Ee > 50 MeV.

TT SDT IBT

4.636 × 102 f2
T 9.817 × 10−2 fT 2.536 × 10 fT

total branching ratio including the tensor part, we can combine the results in Tables II and

IV. By comparing the final result with the experimental data of π± → e±νeγ, we extract

fT = (3.48+8.02
−8.23)×10−4 shown in Table V in the LFQM for mu,d = 250 MeV. In the table, we

TABLE V. Form factor of fT in units of 10−4.

LFQM [4] [11] [13] [15] [16]

3.48+8.02
−8.23 −0.6± 2.8 −56± 17 372± 120 −115± 33 1± 14

have also given other results in the literature including the single tensor form factor fitted

by PIBETA [4]. We note that our result in the LFQM and that by PIBETA correspond to

−1.0×10−3 < fT < 1.66×10−3 and −5.2×10−4 < fT < 4.0×10−4 at 90% C.L., respectively.

IV. CONCLUSIONS

We have studied the momentum dependent π → γ transition form factors FA,V (p
2) in

the ChPT and LFQM. In particular, we have found that FA(0) = 0.0112, 0.0102, and
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(0.151, 0.0131, 0.0113) and FV (0) = 0.0272, 0.0272, and (0.0275, 0.0261, 0.0243) in (a) the

ChPT O(p4), (b) the ChPT O(p6), and (c) the LFQM with mu,d = (230, 250, 270) MeV,

respectively, at the maximal recoil of p2 = 0, Based on these form factors, we have calculated

the decay branching ratio of π → eνeγ. Explicitly, we have obtained that in the SM with

the cut of Eγ > me and Ee > 10 MeV with the relative angle θeγ > 40o, the decay branching

ratio is 76.66 ± 0.25, 76.31 ± 0.25 and (73.67 ± 0.22, 73.57 ± 0.22, 72.58 ± 0.22) × 10−8 in

(a), (b) and (c), respectively, while the experimental measurement is 73.86 × 10−8 by the

PIBETA Collaboration. Since our results fit well with the data, we have also derived a

constraint for the tensor interaction to be −1.0 × 10−3 < fT < 1.66 × 10−3 at 90% C.L. in

the LFQM .
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