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We study the ratios R
(P )

e/µ
≡ Γ(P → eν̄e[γ])/Γ(P → µν̄µ[γ]) (P = π, K) in Chiral Perturbation

Theory to order e2p4. We complement the two-loop effective theory results with a matching calcula-

tion of the counterterm, finding R
(π)

e/µ
= (1.2352±0.0001)×10−4 and R

(K)

e/µ
= (2.477±0.001)×10−5 .

Introduction - The ratio R
(P )
e/µ ≡ Γ(P → eν̄e[γ])/Γ(P →

µν̄µ[γ]) (P = π, K) is helicity-suppressed in the Stan-
dard Model (SM), due to the V −A structure of charged
current couplings. It is therefore a sensitive probe of
all SM extensions that induce pseudoscalar currents and
non-universal corrections to the lepton couplings [1],
such as the minimal supersymmetric SM [2]. Effects
from weak-scale new physics are expected in the range
(∆Re/µ)/Re/µ ∼ 10−4 − 10−2 and there is a realis-
tic chance to detect or constrain them because: (i)
ongoing experimental searches plan to reach a frac-

tional uncertainty of (∆R
(π)
e/µ)/R

(π)
e/µ

<∼ 5 × 10−4 [3] and

(∆R
(K)
e/µ )/R

(K)
e/µ

<∼ 3 × 10−3 [4], which represent respec-

tively a factor of 5 and 10 improvement over current
errors [5]. (ii) The SM theoretical uncertainty can be
pushed below this level, since to a first approximation the
strong interaction dynamics cancels out in the ratio Re/µ

and hadronic structure dependence appears only through
electroweak corrections. Indeed, the most recent theoret-

ical predictions read R
(π)
e/µ = (1.2352±0.0005)×10−4 [6],

R
(π)
e/µ = (1.2354±0.0002)×10−4 [7], and R

(K)
e/µ = (2.472±

0.001)× 10−5 [7]. The authors of Ref. [6] provide a gen-
eral parameterization of the hadronic effects and estimate
the induced uncertainty via dimensional analysis. On the
other hand, in Ref. [7] the hadronic component is calcu-
lated by modeling the low- and intermediate-momentum
region of the loops involving virtual photons.

With the aim to improve the existing theoretical sta-
tus, we have analyzed Re/µ within Chiral Perturbation
Theory (ChPT), the low-energy effective field theory

(EFT) of QCD. The key feature of this framework is that
it provides a controlled expansion of the amplitudes in
terms of the masses of pseudoscalar mesons and charged
leptons (p ∼ mπ,K,ℓ/Λχ, with Λχ ∼ 4πFπ ∼ 1.2 GeV),
and the electromagnetic coupling (e). Electromagnetic
corrections to (semi)-leptonic decays of K and π have
been worked out to O(e2p2) [8, 9], but had never been
pushed to O(e2p4), as required for Re/µ. In this letter we
report the results of our analysis of Re/µ to O(e2p4), de-
ferring the full details to a separate publication [10]. To
the order we work, Re/µ features both model independent
double chiral logarithms (previously neglected) and an a
priori unknown low-energy coupling (LEC), which we es-
timate by means of a matching calculation in large-NC

QCD. The inclusion of both effects allows us to further
reduce the theoretical uncertainty and to put its estimate
on more solid ground.

Within the chiral power counting, Re/µ is written as:

R
(P )
e/µ = R

(0),(P )
e/µ

[

1 + ∆
(P )
e2p2 + ∆

(P )
e2p4 + ∆

(P )
e2p6 + ...

]

(1)

R
(0),(P )
e/µ =

m2
e

m2
µ

(

m2
P − m2

e

m2
P − m2

µ

)2

. (2)

The leading electromagnetic correction ∆
(P )
e2p2 corre-

sponds to the point-like approximation for pion and kaon,
and its expression is well known [6, 11]. Neglecting terms
of order (me/mρ)

2, the most general parameterization of
the NLO ChPT contribution can be written in the form

∆
(P )
e2p4 =

α

π

m2
µ

m2
ρ

(

c
(P )
2 log

m2
ρ

m2
µ

+ c
(P )
3 + c

(P )
4 (mµ/mP )

)

+
α

π

m2
P

m2
ρ

c̃
(P )
2 log

m2
µ

m2
e

, (3)

which highlights the dependence on lepton masses. The

dimensionless constants c
(P )
2,3 do not depend on the lep-

ton mass but depend logarithmically on hadronic masses,

while c
(P )
4 (mµ/mP ) → 0 as mµ → 0. (Note that our c

(π)
2,3

do not coincide with C2,3 of Ref. [6], because their C3 is

not constrained to be mℓ-independent.) Finally, depend-
ing on the treatment of real photon emission, one has to
include in Re/µ terms arising from the structure depen-
dent contribution to P → eν̄eγ [12], that are formally of
O(e2p6), but are not helicity suppressed and behave as
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FIG. 1: One- and two-loop 1PI topologies contributing to
Re/µ to order e2p4. Dashed lines represent pseudoscalar
mesons, solid lines fermions an wavy lines photons. Shaded
squares indicate vertices from the O(p4) effective lagrangian.

∆e2p6 ∼ α/π (mP /mρ)
4 (mP /me)

2.
The calculation - In order to calculate the various coef-

ficients c
(P )
i within ChPT to O(e2p4), one has to consider

(i) two-loop graphs with vertices from the lowest order
effective lagrangian (O(p2)); (ii) one-loop graphs with
one insertion from the NLO lagrangian [13] (O(p4)); (iii)
tree-level diagrams with insertion of a local counterterm
of O(e2p4). In Fig. 1 we show all the relevant one- and
two-loop 1PI topologies contributing to Re/µ. Note that
all diagrams in which the virtual photon does not connect
to the charged lepton line have a trivial dependence on
the lepton mass and drop when taking the ratio of e and
µ rates. We work in Feynman gauge and use dimensional
regularization to deal with ultraviolet (UV) divergences.

By suitably grouping the 1PI graphs of Fig. 1 with
external leg corrections, it is possible to show [10] that
the effect of the O(e2p4) diagrams amounts to: (i)
a renormalization of the meson mass mP and decay

constant FP in the one-loop result ∆
(P )
e2p2 ; (ii) a gen-

uine shift to the invariant amplitude Tℓ ≡ T (P+(p) →
ℓ+(pℓ)νℓ(pν)). This correction can be expressed as the
convolution of a known kernel with the vertex func-
tion Tµν = 1/(

√
2F )

∫

dx eiqx+iWy 〈0|T (JEM
µ (x) (Vν −

Aν)(y)|π+(p)〉 (with Vµ(Aµ) = ūγµ(γ5)d), once the Born
term has been subtracted from the latter. Explicitly, in
the case of pion decay one has (W = p − q, ǫ0123 = +1)

δT e2p4

ℓ = 2GF V ∗

ude
2F

∫

ddq

(2π)d

ūL(pν)γν
[

−(/pℓ
− /q) + mℓ

]

γµv(pℓ)

[q2 − 2q · pℓ + iǫ]
[

q2 − m2
γ + iǫ

] Tµν(p, q) (4)

T µν(p, q) = iV1(q
2, W 2) ǫµναβqαpβ − A1(q

2, W 2) (q · pgµν − pµqν) − (A2(q
2, W 2) − A1(q

2, W 2))
(

q2gµν − qµqν
)

+

[

(2p − q)µ(p − q)ν

2p · q − q2
− qµ(p − q)ν

q2

]

(

Fππ
V (q2) − 1

)

. (5)

To the order we work, the form factors V1(q
2, W 2),

Ai(q
2, W 2) and Fππ

V (q2) have to be evaluated to O(p4) in
ChPT in d-dimensions. Their expressions are well known
for d = 4 [12] and have been generalized to any d [10].
So the relevant O(e2p4) amplitude is obtained by calcu-
lating a set of one-loop diagrams with effective local (V1

and A1) and non-local (A2 and Fππ
V ) O(p4) vertices. The

final result can be expressed in terms of one-dimensional
integrals [10].

While c
(P )
2,4 and c̃

(P )
2 are parameter-free predictions of

ChPT (they depend only on mπ,K , Fπ, and the LECs

L9,10 determined in other processes [13]), c
(P )
3 contains an

ultraviolet (UV) divergence, indicating the need to intro-
duce in the effective theory a local operator of O(e2p4),
with an associated LEC. The physical origin of the UV

divergence is clear: when calculating δT e2p4

ℓ in the EFT
approach, we use the O(p4) ChPT representation of the
form factors appearing in Eq. 5 (Tµν → T ChPT

µν ). While
this representation is valid at scales below mρ (and gener-

ates the correct single- and double-logs upon integration
in ddq) it leads to the incorrect UV behavior of the inte-
grand in Eq. 4, which is instead dictated by the Operator
Product Expansion (OPE) for the 〈V V P 〉 and 〈V AP 〉
correlators. So in order to estimate the finite local con-
tribution (dominated by the UV region) we need a QCD
representation of the correlators valid for momenta be-
yond the chiral regime (Tµν → T QCD

µν ) . This program is
feasible only within an approximation scheme to QCD.
We have used a truncated version of large-NC QCD, in
which the correlators are approximated by meromorphic
functions, representing the exchange of a finite number
of narrow resonances, whose couplings are fixed by re-
quiring that the vertex functions 〈π|V A|0〉 and 〈π|V V |0〉
obey the leading and next-to-leading OPE behavior at
large q [14]. This procedure allows us to obtain a simple
analytic form for the local coupling (see Eq. 10).

Results - The results for c
(P )
2,3,4 and c̃

(P )
2 depend on the

definition of the inclusive rate Γ(P → ℓν̄ℓ[γ]). The ra-
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diative amplitude is the sum of the inner bremsstrahlung
component (TIB) of O(ep) and a structure dependent
component (TSD) of O(ep3) [12]. The experimental defi-

nition of R
(π)
e/µ is fully inclusive on the radiative mode, so

that ∆
(π)
e2p4 receives a contribution from the interference

of TIB and TSD, and one also has to include the effect

of ∆
(π)
e2p6 ∝ |TSD|2. The usual experimental definition of

R
(K)
e/µ corresponds to including the effect of TIB in ∆

(K)
e2p2

(dominated by soft photons) and excluding altogether the

effect of TSD: consequently c
(π)
n 6= c

(K)
n .

Results for R
(π)
e/µ - Defining L̄9 ≡ (4π)2Lr

9(µ), ℓP ≡
log(m2

P /µ2) (µ is the chiral renormalization scale), γ ≡
A1(0, 0)/V1(0, 0), zℓ ≡ (mℓ/mπ)2, we find:

c
(π)
2 =

2

3
m2

ρ 〈r2〉(π)
V + 3 (1 − γ)

m2
ρ

(4πF )2
c̃
(π)
2 = 0 (6)

c
(π)
3 = −

m2
ρ

(4πF )2

[

31

24
− γ + 4 L̄9 +

(

23

36
− 2 L̄9 +

1

12
ℓK

)

ℓπ +
5

12
ℓ2
π +

5

18
ℓK +

1

8
ℓ2
K

+

(

5

3
− 2

3
γ

)

log
m2

ρ

m2
π

+

(

2 + 2 κ(π) − 7

3
γ

)

log
m2

ρ

µ2
+ K(π)(0)

]

+ cCT
3 (µ) (7)

c
(π)
4 (mℓ) = −

m2
ρ

(4πF )2

{

zℓ

3(1 − zℓ)2

[(

4(1 − zℓ) + (9 − 5zℓ) log zℓ

)

+ 2 γ
(

1 − zℓ + zℓ log zℓ

)]

+

(

κ(π) +
1

3

)

zℓ

2(1 − zℓ)
log zℓ + K(π)(zℓ) − K(π)(0)

}

(8)

where κ(π) is related to the O(p4) pion charge radius by:

κ(π) ≡ 4 L̄9 −
1

6
ℓK − 1

3
ℓπ − 1

2
=

(4πF )2

3
〈r2〉(π)

V . (9)

The function K(π)(zℓ), whose expression will be given in
Ref. [10], does not contain any large logarithms and gives

a small fractional contribution to c
(π)
3,4 .

As anticipated, c
(π)
2 is a parameter-free prediction of

ChPT. Moreover, we find c̃
(π)
2 = 0, as expected due to a

cancellation of real- and virtual-photon effects [15]. Fi-

nally, c
(π)
3 encodes calculable chiral corrections (as does

c4(mℓ)) and a local counterterm cCT
3 (µ), for which our

matching procedure [10] gives (zA ≡ ma1
/mρ):

cCT
3 (µ) = −

19 m2
ρ

9(4πF )2
+

(

4 m2
ρ

3(4πF )2
+

7 + 11z2
A

6z2
A

)

log
m2

ρ

µ2

+
37 − 31z2

A + 17z4
A − 11z6

A

36z2
A(1 − z2

A)2

− 7 − 5z2
A − z4

A + z6
A

3z2
A(−1 + z2

A)3
log zA . (10)

Numerically, using zA =
√

2, we find cCT
3 (mρ) = −1.61,

implying that the counterterm induces a sub-leading cor-
rection to c3 (see Table I). The scale dependence of
cCT
3 (µ) partially cancels the scale dependence of the chi-

ral loops (our procedure captures all the ”single-log” scale
dependence). Taking a very conservative attitude we as-
sign to c3 an uncertainty equal to 100% of the local contri-
bution (|∆c3| ∼ 1.6) plus the effect of residual renormal-

ization scale dependence, obtained by varying the scale
µ in the range 0.5 → 1 GeV (|∆c3| ∼ 0.7), leading to

∆c
(π,K)
3 = ±2.3. Full numerical values of c

(π)
2,3,4 are re-

ported in Table I, with uncertainties due to matching
procedure and input parameters (L9 and γ [16]).

As a check on our calculation, we have verified that if
we neglect cCT

3 and pure two-loop effects, and if we use
L9 = F 2/(2m2

ρ) (vector meson dominance), our results

for c
(π)
2,3,4 are fully consistent with previous analyses of the

leading structure dependent corrections based on current

algebra [6, 17]. Moreover, our numerical value of ∆
(π)
e2p4

reported in Table II is very close to the corresponding

result in Ref. [6], ∆
(π)
e2p4 = (0.054 ± 0.044)× 10−2.

For completeness we report here the contribution to

∆
(π)
e2p6 induced by structure dependent radiation:

∆
(π)
e2p6 =

α

2π

m4
π

(4πF )4
(

1 + γ2
)

[ 1

30 ze
− 11

60
+

ze

20(1 − ze)2

×
(

12 − 3ze − 10z2
e + z3

e + 20 ze log ze

)

]

. (11)

Results for R
(K)
e/µ - In this case we have:

c
(K)
2 =

2

3
m2

ρ 〈r2〉(K)
V +

4

3

(

1 − 7

4
γ

)

m2
ρ

(4πF )2
(12)

c̃
(K)
2 =

1

3
(1 − γ)

m2
ρ

(4πF )2
(13)

where 〈r2〉(K)
V is the O(p4) kaon charge radius. c

(K)
3 is

obtained from c
(π)
3 by replacing 31/24 − γ → −7/72 −
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(P = π) (P = K)

c̃
(P )
2 0 (7.84 ± 0.07γ) × 10−2

c
(P )
2 5.2 ± 0.4L9

± 0.01γ 4.3 ± 0.4L9
± 0.01γ

c
(P )
3 −10.5 ± 2.3m ± 0.53L9

−4.73 ± 2.3m ± 0.28L9

c
(P )
4 (mµ) 1.69 ± 0.07L9

0.22 ± 0.01L9

TABLE I: Numerical values of the coefficients c
(P )
n of Eq. 3

(P = π, K). The uncertainties correspond to the input values
Lr

9(µ = mρ) = (6.9± 0.7) × 10−3, γ = 0.465 ± 0.005 [16], and

to the matching procedure (m), affecting only c
(P )
3 .

(P = π) (P = K)

∆
(P )

e2p2
(%) −3.929 −3.786

∆
(P )

e2p4
(%) 0.053 ± 0.011 0.135 ± 0.011

∆
(P )

e2p6 (%) 0.073

∆LL (%) 0.055 0.055

TABLE II: Numerical summary of various electroweak cor-

rections to R
(π,K)

e/µ .

13/9 γ, by dropping the term proportional to log m2
ρ/m2

π,
and by inter-changing everywhere else the label π with

K (masses, ℓπ → ℓK , etc.). c
(K)
4 is obtained from c

(π)
4 by

keeping only the second line of Eq. 8 and inter-changing

the labels π and K. The numerical values of c
(K)
2,3,4 and

c̃
(K)
2 are reported in Table I.
Resumming leading logarithms - At the level of un-

certainty considered, one needs to include higher or-
der long distance corrections to the leading contribution
∆e2p2 ∼ −3α/π log mµ/me ∼ −3.7%. The leading log-
arithms can be summed via the renormalization group

and their effect amounts to multiplying R
(P )
e/µ by [6]

1 + ∆LL =

(

1 − 2
3

α
π log

mµ

me

)9/2

1 − 3α
π log

mµ

me

= 1.00055 . (14)

Conclusions - In Table II we summarize the various
corrections to R

(π,K)
e/µ , which lead to our final results:

R
(π)
e/µ = (1.2352± 0.0001)× 10−4 (15)

R
(K)
e/µ = (2.477± 0.001)× 10−5 . (16)

In the case of R
(K)
e/µ we have inflated the nominal un-

certainty arising from matching by a factor of four, to
account for higher order chiral corrections of expected
size ∆e2p4 × m2

K/(4πF )2. Our results have to be com-
pared with the ones of Refs. [6] and [7] reported in the

introduction. While R
(π)
e/µ is in good agreement with both

previous results, there is a discrepancy in R
(K)
e/µ that goes

well outside the estimated theoretical uncertainties. We
have traced back this difference to the following problems
in Ref. [7]: (i) the leading log correction ∆LL is included
with the wrong sign (this accounts for half of the discrep-

ancy); (ii) the NLO virtual correction ∆
(K)
e2p4 = 0.058% is

not reliable because the hadronic form factors modeled in
Ref. [7] do not satisfy the QCD short-distance behavior.

In conclusion, by performing the first ever ChPT cal-
culation to O(e2p4), we have improved the reliability of
both the central value and the uncertainty of the ratios

R
(π,K)
e/µ . Our final result for R

(π)
e/µ is consistent with the

previous literature, while we find a discrepancy in R
(K)
e/µ ,

which we have traced back to inconsistencies in the analy-
sis of Ref. [7]. Our results provide a clean basis to detect
or constrain non-standard physics in these channels by
comparison with upcoming measurements.
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