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Abstract

New interactions with Lorentz scalar structure, arising from physics beyond the standard model
of electroweak interactions, will induce effective pseudoscalar interactions after renormalization by
weak interaction loop corrections. Such induced pseudoscalar interactions are strongly constrained
by data ont* — /¥, decay. These limits on induced pseudoscalar interactions imply limits on the
underlying fundamental scalar interactions that in many cases are substantially stronger than limits
on scalar interactions from diregtdecay searches.
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1. Introduction

While there is strong support for thé — A form of the charged weak current, it is
possible that new physics at or above the weak scale could give rise to scalar interactions
that would compete with standard model processes. Examples of such possible physics in-
clude the exchange of extra Higgs multiplets which could enter the theory at scales from
the Z mass upwardgl], leptoquarks which could be present at scales above 200[QeV
contact interactions from quark/lepton compositeness which could be present at the TeV
scale[1], or strong gravitational interactions in TeV brane world modtesRecently, pre-
cision experimentf2—4] have searched for scalar interactionghuecay, however, direct
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experimental constraints on scalar couplings still remain relatively weak as compared to
the corresponding limits on pseudoscalar coupljigs].

The precision of the limits on pseudoscalar couplings comes in part from the fact that
the pion, a pseudoscalar meson, has a chirally suppressedsg€cay/* v, which would
be sensitive to new pseudoscalar interacti@js These pseudoscalar interactions would
be detected by the failure of the standard model predigiipror the chiral suppression
in the ratio of branching ratiogg%:;“i})). It is the large chiral suppression factor, by the
square of the electron—muon mass ratio, that allows such a powerful test of new physics
that violates chirality and parity.

In the standard model, the leading conttibua to pion decay occurs through tree level
W exchange. At the quark level, this is the same process that is involved prdeeay
of a nucleon ignoring the stator quarks. While the pion cannot decay through a scalar
interaction, the pion can dec#lyrough induced pseudoscalatdractions generated from
the electroweak renormalization of the scalar couplings. It is of considerable interest to
use limits on the induced pseudoscalar couplings to set indirect limits on the size of the
underlying scalar interactions.

In the following sections we outline our ieds and estimate the limits on the size
of scalar couplings based on the indireceets from charged pion decay. We use general
operator techniques to obtairoatel independent results and we combine these results with
data from pion decay and also muon capture, to tairsthe scalar couplings indirectly.
We also discuss some of the implications of these results and comment on prospects for
future searches for scalar interactions.

2. Pion physics and new pseudoscalar interactions

Consider constructing an effective Lagrangian and matrix element for the process
7t — [Ty, in the presence of pseudoscalar interactions. We can set limits on the strength
of the pseudoscalar interactions from their interference with tree l@vekchange. Since
the pion is a pseudoscalar, we can use the following relations for current matrix elements:

Oliayuysd|n(p)) = iv2fz py,

—_ . x . fnm%
(Olitysd|7(p)) = iN2fr =iV 2T,
my +mgy
(Olia""ysd |7 (p)) =0,
(Oliia ™ d|7 (p)) =0, (1)

where f; =93 MeV andf,, = 1.8 x 10° MeV2. The matrix element for the tree levial
contribution can easily be constructed by using @9.giving

Myy==GF fr COS@C[ZVM(]-_V@VI]I’M’ 2)

wherep,, is the pion momentum an@l. is the Cabibbo angle. A pseudoscalar contribu-
tion with left-handed neutrinos in the final state can be expressed as a four-Fermi contact
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operator,

Lp= 2A2 [l(l y5)v1][uy5d] (3)

wherep is the pseudoscalar coupling constant. This expression can be converted to a matrix
element using Eq1)

Mp=p [l_(l - y5)vl]. (4)

S
V242
In the presence of a pseudoscalar interaction, the overall matrix element for the process
n* — [*y is the coherent sum\ p + My+ = M,

f 2

Having constructed the matrix element, we can now estimate the ratio of branching ratios

M =G fr O [Iy* (L= ys)vi ]| pp + —=—[I(1 - ys)01]. (5)

M~ —eve)  (m2—m?) (Mol?)

= ) 6

r'mc=— l“)u) (m72[ _m,%) <|M;w|2> ( )
Summing over final states of the squared matrix element we have
G r fr fr COSH,

(M) = 4G2 2 o fm2(m? — m?) + 8%%(@% —m?)

272

P,
A4ﬂ (mzzr - mlz) (7)

For simplicity we have assumed that the pseudoscalar coupling is real, however, in general
p may be complex. The more general expression is obtained by making the following
replacements:

p+p*
— =Re(p),

(0)% = Ipl?. 8)
We find that the branching ratio is given by

'(m~ — ev,) _ (mjo — mf) mf(m?r — mf) + R, )
L@@~ — pvy)  (m2 —m2)| m2(m2 —m2) + R,
where ther, , functions are
fn Re(p) 2 2
W= Ao, e M~ Me)
o2 /2 2 2
— - \m_ —m . 10
2f2G2 A coR6, (=) (10)

Thus far we have only discussed interactions with left-handed neutrinos in the final
state. The inclusion of right-handed neutrinos requires a modification since pseudoscalar
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contributions to decays with right-handed tréwos in the final state cannot interfere with
the W exchange graph; hence the contributibmshe rate add incoherently. With right-
handed neutrinos, the expression for the matrix element becomes

_ P/fn 0
Mp = oAz [l(l—}- )/5)1)[], (12)
wherep’ is the pseudoscalar coupling involving right-handed neutrinos. Defining
2 2\2 2
p= Ma M) M g e 1074, (12)

2 _ 12V2 2
(m% mu) mg
we can express the branching ratio as

I'(m™ — ev,)

I'(mr= — puvy)
fx Re(pe) lpe |2 2 A
_7 1+ ﬁGFAan coShem, + 2G2 A% f2 o f.m?2 + 2G2 f2 A% co2 0,m2 (13)
14 2 J=Reow lowu 2 2 n [ASE

GrA?frcoshemy ' 2G5.A4f2cof0.m2  2G% A% f2cof O.m?2

If we assume either universal scalar couplings or else scalar couplings involving only the
first generation, we obtain the followingparoximation for the ratio of decay widths:

'(m™ — ev,)

I'(mr= — pvy)
7 R 272
%T<1+\/§ f; o ; p1°fx
GrA® fz COSOem, 2G5 A% f2c0% 0.m2
12 f2
; |4p |2 Ix 2>. (14)
2G5 A% f2cof O.m?

We will discuss the effects of more general generation dependence of the scalar couplings
in Section6. The theoretical standard model calculation including radiative corrections is
Brih = (1.2352+ 0.0005 x 10~* [7] and the measured experimental branching ratio is
Brexp= (1.230+ 0.0040 x 104 [1,8-10} Combining the experimental and theoretical
uncertainties in quadrature, we can obtain a bound on the pseudoscalar couplings at 2

~1.0x 1072
< 3 InRep) o2 72 o' 2 fZ
S TGrA? frcoshem,  2G2 A4 f2co@0,m2  2G3 A4 f2COS0,m?2
<22x10°3 (15)

3. Local scalar operator analysis

Electroweak interactions can radiatively induce pseudoscalar operators from pure scalar
interactions. Suppose that at some scalihere exists new physics that generates a purely
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L lR L lR
Q dr Upr Q

Fig. 1.01 and Oy, type A contact interactions.

I lr L In
Q dR Q dR

Fig. 2. Example of electroweak corrections to type A conitaeractions. All permut#ons are required including
wavefunction renormalization; the vector bosons aremjez'g' andBy,.

scalar four-Fermi interaction. It may be due to the exchange of fundamental scalars or it
may be due to a variety of other physics such as compositeness, extra dimensions, lepto-
quarks, et cetera. Independent of the details of the new physics that generates the scalar
interactions, they will appear as non-renotizeble four-Fermi scalar contact operators
below the scalet.

In order to facilitate power counting, thdS scheme is most often used with effective
field theory[11]. TheMS scheme (or any mass independent subtraction scheme) presents
the subtlety that heavy particles do not decouple in beta function calculations. That is,
mass independent renormalization schemeasadsatisfy the conditions of the Applequist—
Carazzone theorefd1]. This is dealt with by simply integrating out the heavy fields by
hand at their associated scale. Thus whetheanalyze the effective interactions in a UV
complete theory or in the effective theory, we will arrive at the same renormalization group
running (up to threshold corrections) provided that we are only interested in results below
A and only up to some finite power o%).

We start by considering S@) x U(1) invariant four-fermion contact interactions that
are generation independent and flavour diagonal Fsge 1 and % We will discuss the
effects of generation dependence in Secéiowe consider two types of scalar operatorsin
order to facilitate comparison with the direct experimental constraints. Type 4 ave
left-handed neutrinos in the final state while type®s( have right-handed (sterile) neu-
trinos. These interactions appear as extensions to the standard model Lagrangian involving
non-renormalizable operators,

SA SB
Lscalar= —0a+ 2

O3, (16)
wheres, andsp are undetermined scalar couplings. From these interactions, electroweak
radiative corrections (sd€igs. 2 and »can in principle induce pseudoscalar interactions.
We retain corrections up to orde[%? and from this analysis we extract the anomalous
dimension matrix.
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3.1. Type A operator analysis. 04

The operators of type A are as follows:

O1=[erL][QdR], (17)

02 =[erL][ur Q] (18)
(where the SI(2) indices have been suppressed) such that the pure scalar interaction is

Oa= 01+ O3. (29)

Since we are assuming that at the scaliere is a pure scalar interaction, we takgand
0> to enter the theory at the high scale with equal weight.

In calculating the anomalous dimension matrix a third operator is generated through
renormalization: the operat@®’ = [eg Q][ig L] mixes with the other two. However, in
order to construct the matrix element for the pion decay amplitude, we need to rotate the
operators to a basis that has a definite mai@ment between the vacuum and the on-shell
pion state. This requires Fierz reordering

1 1
0'=-30,+ <_§> (ekoL][iRo"" 0], (20)
where we define
1\, _ _
O3= <_§) [eRUWL][uRa“”Q]. (22)
Note that(0] O3] (p)) = 0. This leaves us with the following beta functions:
3(0) 1
== 50, 22
o = 32 (22)
where
01
0= ( 02> (23)
O3
and
62+ Lg'2 0 0
y = 0 6g? + 128,262+ 10g'2 |. (24)
0 ggZ + 1758/2 1282+ lTO3g/2

The constantg’ andg are the Y1) and SU2) coupling constants, respectively. The results
of the numerical integration of the renormalization group equations are displaifegl B

01 and Oy start out with equal amplitude at the scaleThey are then renormalized to the
weak scale of roughly 100 GeV. In the first panel thaxis indicates the starting scatg

i.e., the scale of new physics. Theaxis indicates the amount each operator is suppressed
in running from the scalei to the weak scale. Each operatenormalizes differently and

the splittings give rise to the pseudoscalar interaction. If the stateat or very near the
weak scale then threshold effects become important, which we will discuss in the following
section. The second panel plots the differenc&®gfand O, as a function of scale. This
difference is proportional to the amount of pseudoscalar interaction induced.
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Fig. 3. Type A operator RGE analysis. Panel (a) shows how each operator evolves with scale. Panel (b) displays
the induced pseudoscalar proportionality factor.

VR L VR L
UR Q Q dr

Fig. 4.01 andO», type B contact interactions.

VR L VR L
UR Q Q dR

Fig. 5. Example of electroweak corrections to type B coritgteractions. All permut#ons are required including
wavefunction renormalization; the vector bosons arewfjjez‘3 andBy,.

3.2. Type B operator analysis. Op

The type B operators are as follows:
01 =[Lvg][QdR], (25)
02 =[Lv][ir Q] (26)
(where the SI(2) indices have been suppressed) with
Op = 01+ 0>. (27)

We assume that the interaction at the scalés purely scalar as in the type A sce-
nario. Again operator mixing is present with a third induced operator, namély
[Ldr1[Qvr] which must be rotated as before into the appropriate bakis: —%02 +
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Fig. 6. Type B operator RGE analysis. Panel (a) shows how each operator evolves with scale. Panel (b) displays
the induced pseudoscalar proportionality factor.

—DILo" vg][Qouvdr] Where Oz = (—3)[ Lo vg][Qoyvdr]. We extract the follow-
ing anomalous dimension matrix:

B e I (28)
where
01
0= ( 02> (29)
O3
and
6g2 + g2 0 0
y= 0 6g? + §g'® 637 -5¢7 |. (30)
0 ggZ_%g/Z 12g2+ %4g/2

The results of the numerical integration of the renormalization group equations are dis-
played inFig. 6. As we have seen before in Secti8ri the graphs irFig. 6 illustrate

the effects of renormalization on the operatorsand O2 when they enter with the same
amplitude at the scald.

In both type A and B scalar interactions we see that renormalization effects induce a
pseudoscalar interaction. The size of the pseudoscalar interaction depends on how far the
scaleA is from the weak scale. The larger the gcaéparation is, the larger the induced
pseudoscalar proportionality factor beconiHse effective pseudoscalar couplings, which
we denoted ap andp’ in Section2, are given by

P =s5444(A),
p =spAp(A), (31)
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whereA, and Ap are the renormalization group factors induced from the running from
the scaleA down to the weak scaley andAp are plotted in the second panelrgs. 3

and 9. The factorss4 andsp are the undetermined scalar coupling constants introduced
in Eq. (16). Since the pseudoscalar is induced from a scalar interaction we are now in a
position to place limits on the magnitude ofetiscalar coupling from pion physics; the
scalar couplings andsg at the scale of the new physiesare now constrained by the
requirement thap andp’ satisfy Eq.(15).

A comment on QCD corrections is in order. QCD is a parity invariant theory and there-
fore QCD corrections cannot induce a pseudoscalar interaction by themselves. In our
analysis, the induced pseudoscalar arises from the difference of two operators that ini-
tially combined to give a purely scalar interaction and the QCD corrections will affect the
two operators in the same way. The QCD corrections can only adjust this difference by
an overall multiplicative factor. This is true for both operators of type A and B. However,
in Section5 we compare the direct experimental constraints on scalar couplingsgrom
decay to the indirect constraints on the ranalization induced pseudoscalar interactions
from pion decay. Since the same scalar opesadioe involved in both processes, the QCD
effects are the same for each case and thezefidl cancel in a comparison of the relative
strengths of the limits from the two processes. The largest part of the QCD renormalization
of the scalar operators (and hence of their weak interaction induced pseudoscalar differ-
ence) will come from the QCD induced running from the weak scale down to the chiral
symmetry breaking scale, of ordet £, ~ 1 GeV[12], where we take the pion decay ma-
trix element using PCAC. The correctiongach of the operators can be computed through
the QCD renormalization group running of these operators

as (1 GeVP)

4/21
[0 M) ~1.30 M 32
o (V12 ) A,B(My) A.B(My) (32)

04,3(1GeV) = (
for Agcp =200 MeV. The induced pseudoscalar, which is proportional fog, will be
enhanced by this factor of 1.3.

4. Pseudoscalar interactionsfrom threshold effects

A limitation of the renormalization group operator analysis of the last section is its inap-
plicability if the scale of new physics is at or yemear the electroweak scale. In this case,
threshold effects become the dominate contribution. To estimate the threshold effects, we
consider a toy model where a VEVless scalar doublet is added to the standard model. In-
deed it is only for the exchange of a scalar doublet that we need to consider a possible
scale for new physics near the electroweak scale. For leptoquarks, compositeness, and ex-
tra dimensional gravity, direct experimental constraints injp]ythat the scaleA of new
physics is sufficiently above the electroweak scale that RGE running dominates threshold
effects. In principle, the addition of a \WHess scalar doublet can lead to both scalar and
pseudoscalar interactions in the tree level Lagrangian. Since pseudoscalar interactions are
directly constrained by tree level contriimns to pion decay and we are presently inter-
ested in limits on pure scalar interactions, we arrange the couplings such that only scalar
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u d u d

Fig. 9. Radiative correction® the quark-scalar vertex.

interactions arise at the scale of new physics,

L=)LerS + (2)QdrS — (M)QugS +h.c, (33)

where . and )’ are the scalar couplings to the quarks and leptons, respectively, and
S =io2S. In this working example, the scalar interactions have the property that they
couple in a universal and flavour diagonal manner with undetermined scalar couplings to
quarks and leptons. It is the charged scalar couplings that-#tiecay experiments con-
strain directly. The pseudoscalar interaction can potentially be induced at one loop through
three classes of diagrams: scalar-dreséexxchange box diagrams, scalar-dresgéedx-
change box diagrams and radiativarestions to the quark vertex (séégs. 7-9. The

weak interactions do not respect parity and the scalar interactions change chirality, thus
diagrams of this form can potentially induce a pseudoscalar interaction. To estimate the
effect of the scalar on the branching ratio, we will make the approximation that the quarks
are massless and ignore external momenta. Box diagrams that involve the Higgs or the
Goldstone modes can be ignored since the tingpare mass proportional and hence their
contribution is small.
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By explicit calculation we can show that while both the dresgedndZ exchange box
diagrams give non-zero amplitudes, their tensrcture is such that &dr taking the matrix
element between the pion and the vacuum they give vanishing contributions. In the vertex
correction class of diagrams we are dealing with primitively divergent graph$i{ge®).

In order to obtain a conservative estimate of the induced pseudoscalar arising already from
threshold effects, we can regulate the loop diagrams by cutting off the loop momentum
at the weak scale and integrate from OM&;,. Cutting off the loop momentum a¥/,
represents a conservative estimate, in that the scale of new physics is at the weak scale and
therefore there is no scale separation for renormalization group running proper. In this case
we find a non-vanishing contribution. The three graphBig 9 give the following result

for the pion decay matrix element:

M N282
Vertex = = e a2 cog 0w M2
X [(—% sin? 9w> IN(2) + cog26,,) (In(2) — %)] [[(1—ys)v]
V2P fald -
~013——"" __[i(1— ) 34
647T2C0§9wM§[ ( V5)V1] ( )

To get a second, independent, estimate of thestiold corrections, in a different renor-
malization prescription, we will imagine integrating out the weak scale degrees of freedom
(W, Z and scalars) to get an effective low-energy theory. The resulting theory will have
only dimension six four-fermion operators; to simplify our calculation let us imagine set-
ting the scalar masses just below the mass ofthand Z and integrating out th& and
Z first and then immediately integrating out the scalars, thus inducing the four-fermion
operators. If we use a dimensionless reguldtoe effective fermion-scalar theory after
integrating out théV andZ will have Yukawa couplings shifted by threshold effects nec-
essary to reproduce the residual effects of Weand Z in the resulting effective theory
in which they are absent. These threshold corrections have been comp[it8dLi4]. We
then immediately integrate out the scalar&thwheir corrected Yukawa couplings, to get
the final low-energy effective theory of fermions with four-fermion couplings. Using the
results for the threshold corrections for Yukawa couplings ff@8y14], with the gauge
charge representations of our particles, and then immediately integrating out the scalars at
the weak scale (which we take to Bb£,) we get an effective induced interaction from the
vertex corrections of

V282 fr 0!
6472c0S 6,, M2
That the estimates of Eq€34) and (35)which use two entirely different regularization
and renormalization prescriptions, agree to within a factor of two gives us confidence that
estimates of the threshold corrections arenis brder and are not artifacts of the regulator

chosen. To be conservative, we will use the estimate ofE)which in conjunction with
Eqg.(15)and in the absence of right-handed neutrinos gives

Myertex~ 0.08 [l_(l —¥5) Vl]- (35)

K _
—3x102%2< =L <6x1073, (36)
Gr
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where

AN
=
Mz
The above calculation gives a conservative estimate of the amplitude, including only contri-
butions from threshold effects. We see in this toy example that even from threshold effects
alone a pseudoscalar interaction will be radiatively induced.

|Ks| = (37)

5. Comparison with g-decay constraints

We can compare our bounds on scalar currents, with those arising in ngetianay.
The effective Hamiltonian for allowef-decay has the general Lorentz fofib]

G _ _ , -
H= 7; {(wpyuwnxcvwm + CyPeyuysin)

+ (&quVSWn)(CAI;eV# Yy + C;x IZIEJ/MVSWV)
+ (WY p¥n)(Cs¥ery + Csreysi)

1 - - , -
+ E(!/fpgku!/fi1)(CT !/fegku!/fv + CTweO‘)»uVWﬁv) } (38)

A pseudoscalar term has not been included since it vanishes to leading order in guclear
decay. In the absence afht-handed currentg; = C; and as we have mentioned before,

we consider purely scalar interactions. (Note that in the abb‘g’é, is taken to be the left
projector. This is opposite to our convention in the preceding sections. However by using
this convention in this section, it will be easier to compare with ghéecay literature.)

The transition probability per unit time is given [35]

2m .
Wif = = peEe(Emax— o) 1+ av, cosp + b2 ) sind do, (39)
T 4n3 E.
whereEmax is the maximum energy of the electron in beta deeays p./E. and
1
& =5IMpP(ICvI? +1Cy 12 +1CsI* +1C51%)
1
+5I1MarI(ICal2 +IC, 12 + ICr 2 +1C7 ),
1
ag = S|Mr[*(ICvI? +1Cy 2 = |Csl? = IC5?)
1
— SIMarP(1ICa +ICy 2 = ICrI? = IC7?),
1 1
bé =3 Re(CsCy + CsCyF) IMp|? + 5 Re(CrCh + CrC¥) Mg % (40)
The anglep, is the angle between the electron and neutrino momenta athe Fierz

interference term. The direct searcj@s4] for scalar interactions i8-decay consider
pure Fermi transitions 0— 0" as the parameter has a particularly simple form. In this
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case the Gamow-Teller matrix elements argesib and the Fermi matrix elements divide
out

L _levPHICy P - 1Cs P - Icyl?
ICvIZ+ IC} 12+ ICsIZ + ICy 2

(41)

Since in the standard mod€l, = C;, = 1, a # 1 implies evidence for an effective scalar
interaction.

We need to rewrite our expressions for scalar interactions in terris ahdC! where
C; = C;/Cy. The scalar couplings can be re-expressed

A2Gpcosh, ~ =

&:—{%—AQ+QL (42)
A2Gpcosh, ~ =

&=——%;4wffu (43)

where theS,, Sp denote scalar interactions at the nucleon level. The operator analysis
of Section3 was completed with quarks, thus weed to include the scalar form factor
{plad|n) which can be estimated from lattice calculati¢h6], (p|ud|n) ~ 0.65+ 0.09.

By saturating the error in this quantity, we can obtain a conservadiv@straint equation

on the scalar couplings from pion decay (see #8§))

~1.0x 1072
1 fada g = | 7 azjz A2F2
< == Re(Cs + C C.+C C.—C
0.74 fym, 0TIt 572 72,2 O T O 572 22 |G T 6
<22x 1073 (44)

If we include only left-handed neutrinos in the theory, we are constrained to lie along the
line Cy = C‘; whereas if we include only right-handed neutrinos we are forced to lie along
Cs = —C;. We can now examine a few special cases.
In the absence of right-handed neutrinos, if we congideandC; to be purely real and
the scaleA of the order of 200 GeV, the indirect limits fron™ — [*v; decay give us the
limit
—12x10°3< Gy <27 x 1074, (45)

For comparison, the experimental 90% confidence limit determined from the b-Fierz in-
terference term irg-decay (see Eq(40)) is |Re(Cy)| < 8 x 1073 [3,5]. We see that the
indirect limit from pion decay is stronger byer an order of magnitude. On the other
hand, if we conside€; andC; to be purely imaginary; again in the limit of left-handed
couplings we obtain

|Cs] < 1.2 x 1072 (46)

where the scalel is of the order of 200 GeV. Again for comparison, the experimental
limit on the size of the imaginary part at the 95% confidence level, with only left-handed
neutrinos, is approximatelyim(Cs)| < 1 x 10~1 [3]. The indirectz® — [Fy; limit is
stronger by approximately an order of magnitude. If we t@ke= —Q’, so that we are in
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Fig. 10. Constraint plots on the real parts@f and C(, at A =200 GeV. Panel (a) corresponds to a phase of
0°; panel (b) to+45°; and panel (c) to 45and —45° for C; and é;,, respectively. The diagonal band is the
experimental limit set by the Bierz interference term fromi-decay at the 90% confidence level and the solid
annulus is the approximate experimental bound givegB]inin all cases, the allowed region is the band between
the two ellipses. An enlargement of the figures is displaydeign 11

the limit of right-handed couplings and theHierz interference term vanishes we find
|Cs| <1.0x 1072, (47)

Again for comparison, atdl, the direct experimental constraint|i§;| < 6 x 102 [3].

In each case presented the scale of new physics was-at200 GeV corresponding

to A4(200 GeVj ~ 7.7 x 104, A(200 GeVj ~ 8.9 x 10~*. Because the pseudoscalar
interactions are induced through renormalization group running fiotiown to the elec-
troweak scale, the higher the scale of new physics is, the more competitive our results
become relative to beta decay. As the scale of new physics is lowered, the constraints
from 7+ — [*v; become less stringent. However even in the worst case limit where the
new scale is at th&-mass and therefore we would no longer have an interval of renor-
malization group running, the renormalization threshold effects calculated i(8Epare
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Fig. 11. Constraint plots on the real parts@f and é; at A = 200 GeV. Panel (a) corresponds to a phase of

0°; panel (b) to+45°; and panel (c) to 45and —45° for C; and C‘§, respectively. The diagonal band is the
experimental limit set by the Bierz interference term frori-decay at the 90% confidence level. In all cases,

the allowed region is the band between the two ellipses. The enlarged area more clearly shows the width of the
region.

still competitive. As an example, if we tak& andC; to be real and ignore right-handed
neutrinos we find that

—2x102%<C,<4x 103 (48)

Plots of the pion physics constraints for the more general situation (where the real and
imaginary parts o’y and C; vary independently) are given Figs. 10-13We plot the
constraints for the real and imagiyaarts separately. Note from E@4) that the phases
of Cy andC; are important when constructing these separate plots. In order to convey the
effects of the phases most clearly, we have ehdbree interesting cases. In the real plots
we considerCs; andC}, to each have a phase of;0C; andC; to each have a phase of
+45°; and the situation wheré€; has as a phase of 4andC; has a phase 0f45°. In
the imaginary plots we considef; andC; to each have a phase#B0°; C; andC; each
have a phase af£45°; and the case wher€; has a phase of 45andC; has a phase of
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Fig. 12. Constraint plots on the imaginary partitgfandé; at A = 200 GeV. Panel (a) corresponds to a phase

of +£90°; panel (b) to+45°; and panel (c) to 45and—45° for Cy; andC}, respectively. The solid ellipse is the
approximate experimental bound on the imaginamt pathe couplings assuming nothing about the pH&%e

In panel (a), the unshaded interior ellipse is the constraint from pion decay. In the remaining plots, the allowed
region is the band between the two ellipses. An enlargement of the figures is displdigdli

—45°, All three plots in the imaginary case are well within the region allowed by the direct
experimental bound$,17].

There are two points of interest that warrant further discussion. First, note that in the
limit of sufficiently large phases (i.ex 85°) the ellipse bound ifrig. 11 moves entirely
inside the b-Fierz interference limit allowed region. This is expected since phases ap-
proaching 90 imply thatC, andC; are almost completely imaginary. When this situation
occurs and we are in the limit of left-handed couplings (i.e., along thedine C;), there
are two solutions consistent with the pion physics constraints and the b-Fierz interference
bound. One solution is centered around 0 and the other is centered off 0 along the line
Cs = C; yet inside the b-Fierz interference limits. Even in these cases, the width of the
ellipse bound is still of the order of 2 10~2. Secondly, in order to move from the origin
along the ellipse by more than the width of the allowed region requires a delicate cancel-
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Fig. 13. Constraint plots on the imaginary partsf?tgfandé_é at A = 200 GeV. Panel (a) corresponds to a phase
of £90°; panel (b) to+45°; and panel (c) to 45and—45° for Cy andéé, respectively. In panel (a), the interior
of the ellipse is the constraint. In the remaining plok® allowed region is the band between the two ellipses.
The enlarged area more clearly shows the width of the region.

lation between the terms in E¢44). If we ignore the possibility of this cancellation, the
region allowed by pion decay would collapgea small region near the origin of length
given by the width of the ellipse bounds.

6. Flavour dependent couplings

Thus far we have obtained limits on scalar interactions in the limit of universal flavour
couplings. Let us now relax this assumption. One case that deserves attention is the limit of
mass proportional couplings. This implies that/(mf(m,% —mf)) = Rﬂ/(mﬁ(m,zr —mi))
in Eq.(10)and therefore there is no effect on the pion branching ratio

(49)

I~ —eve) (mjo —mf) [ mf(m?r —mg) + S, :| _r

It~ — pvy)  (m2 —m2) [ m2(m2 —m2)+ S,
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Fig. 14. Constraint plots on the .| and|C,,| couplings atA = 200 GeV. Panel (a) corresponds to phases for
C. andC,, of 0°, 0°; panel (b) to 90, 9C°; panel (c) to 189, 187°; panel (d) to£45°, £45°, respectively. The
allowed region is the bounded area in the lower leftner. The horizontal line is the muon capture bo{i®].

This observation also holds in the presence of right-handed neutrinos. However, in this
case, we still can bound the scalar couplings involveg--atecay by combining the * —

%y limits with data from muon capture experints. Recent experiments and analysis of
muon capture oAHe indicate that the muon—nucleon scalar coupling is boundgtigly

ISyl B
A—"Z<4xlo °Gr

(50)

with a neutrino of left-handed chirality. Therefore, in the limit of mass proportional cou-
plings, S, /A2 must be of the order of 200 times smaller due to the electron—muon mass

ratio. This implies tha€, is bounded

ICs| <2 x 1074,

(51)

In order to estimate the degree to which the presence of muon scalar interactions can
weaken the limits that we infer from* — [y, let us assume that the muon scalar cou-
pling saturates the experimental bound E#f). Substituting this into the expression for
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the pion branching ratio Eq13), ignoring right-handed neutrinos and assuming a sdale
of 200 GeV, Eq(15)is modified to the following form:

f= Re(p) | f2
GrA?frcosom,  2G2 A% f2c0S0.m?2

We find this conservative approach has the effect of weakening our limits a factor of three
at most compared to ¢hanalysis in SectioB. The limits on scalar couplings withd =
200 GeV, fromr® — [*1; combined with muon capture scalar limits, are substantially
stronger than limits on scalar couplings from dirgetlecay searches.

Finally, we consider the allowed region for the electron-scalar and muon-scalar cou-
plings in a model independent manner. Agdie tonstraint equation derived from Ef3)
is

—33x1072<V2 <73x1073 (52)

T Re(C.)Ax IC.|?A2 f2
1 + ﬁ S COSOcm, + 2f7g COSZA@CWE

7 202 72
1+ﬁfanCu)AA+ |Cul= A% f7

[ cosemy, 2}‘7? cod Q;mﬁ

—1.0x10?< ( - 1) <2.2x 1073, (53)

where
S Se
C,=—", Co=—".
T Gpa? ‘T GrA?
We display the results ikig. 14for a number of different phase conditions. We consider

the cases where the complex phas€ptindC,, are 0, 0°; 90°, 90°; 180°, 180C°; £45°,
+45°, respectively.

(54)

7. Discussion

By considering renormalization effects on wisal (or alternatively first generation),
and flavour diagonal scalar operators, we have derived limits on the size of the ratio
between scalar and vector couplinigem precision measurements of® — [+, de-
cay. As a typical constraint value, in the absence right-handed neutrinos, we find that
—1.2x 103 < Cs < 2.7 x 10~*for A of the order of 200 GeV. A more general compari-
son with theg-decay experiments (with the inclusiofiright-handed neutrinos) is made in
the plots inFigs. 11 and 13We note that the most conservative estimate of the limits occurs
when the new physics arises at the electroweak scale. In this case, the contribution to the
induced pseudoscalar comes entirely from threshold corrections which we estimate from
the calculations in Sectiof. The limit for real couplings in the absence of right-handed
neutrinos from threshold contributions is3 x 102 < C, < 6 x 1073, In the scenario
where we have arbitrary generatioepindence of the scalar couplings; — I*v; lim-
its can be combined with limits on scalar interactions in muon capture to bound the first
generation scalar couplings. These limits are illustrated in particular cabas 4

These observations have implications for curggmtecay experiments. Direct searches
for scalar interactions ig-decay will be most competitive if the new physics responsible
for the effective scalar interactions arisedtst electroweak scale in the explicit exchange
of new scalar particles. In these circumstances, the indirect limits from threshold induced
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pseudoscalar interactions, E¢8), are comparable to the diregtdecay scalar searches.
Therefore, interest in search&® new scalar interactions witf-decay experiments re-
mains undiminished.

On the other hand, for new effective scalaeractions arising as effective $2J) x U(1)
invariant operators at mass scales above 200 GeV (as expected in models with leptoquarks,
composite quarks/leptons, or low scale quantum gravity) the constraints arising from the
precision measurements of — [*1; decay, combined with limits on scalar interactions
in muon capture, can be stronger by an order of magnitude or more than the direct ex-
perimental searches. Furthermore, the redasitrength of these searches becomes better,
the higher the mass scale of the new physics compared to the electroweak scale. This ar-
gues strongly for improved experimental precision in measurements of muon capture, and
x* — [Ty decay. In particular we note that in the case of pion decay, the experimen-
tal error exceeds the uncertainty in the thetmal calculation by a factor of eight. A new
measurement of * — [+, decay with an order of magnitle greater precision would not
only constrain physics beyond the standard model which could potentially contribute to
tree level pion decay, but as we have argued above, will also indirectly provide tests of new
scalar interactions of unparalleled precision.
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