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Abstract

New interactions with Lorentz scalar structure, arising from physics beyond the standard
of electroweak interactions, will induce effective pseudoscalar interactions after renormalizat
weak interaction loop corrections. Such induced pseudoscalar interactions are strongly con
by data onπ± → l±νl decay. These limits on induced pseudoscalar interactions imply limits o
underlying fundamental scalar interactions that in many cases are substantially stronger tha
on scalar interactions from directβ-decay searches.
 2004 Elsevier B.V. All rights reserved.

PACS: 12.15.Lk; 12.90.+b; 13.20.Cz; 14.40.Cs

1. Introduction

While there is strong support for theV − A form of the charged weak current, it
possible that new physics at or above the weak scale could give rise to scalar inter
that would compete with standard model processes. Examples of such possible phy
clude the exchange of extra Higgs multiplets which could enter the theory at scale
theZ mass upwards[1], leptoquarks which could be present at scales above 200 GeV[1],
contact interactions from quark/lepton compositeness which could be present at th
scale[1], or strong gravitational interactions in TeV brane world models[1]. Recently, pre-
cision experiments[2–4] have searched for scalar interactions inβ-decay, however, direc
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experimental constraints on scalar couplings still remain relatively weak as compa
the corresponding limits on pseudoscalar couplings[1,5].

The precision of the limits on pseudoscalar couplings comes in part from the fac
the pion, a pseudoscalar meson, has a chirally suppressed decayπ± → l±νl which would
be sensitive to new pseudoscalar interactions[6]. These pseudoscalar interactions wo
be detected by the failure of the standard model prediction[7] for the chiral suppressio
in the ratio of branching ratiosΓ (π−→eν̄)

Γ (π−→µν̄)
. It is the large chiral suppression factor, by t

square of the electron–muon mass ratio, that allows such a powerful test of new p
that violates chirality and parity.

In the standard model, the leading contribution to pion decay occurs through tree lev
W exchange. At the quark level, this is the same process that is involved in theβ-decay
of a nucleon ignoring the spectator quarks. While the pion cannot decay through a sc
interaction, the pion can decaythrough induced pseudoscalar interactions generated from
the electroweak renormalization of the scalar couplings. It is of considerable inter
use limits on the induced pseudoscalar couplings to set indirect limits on the size
underlying scalar interactions.

In the following sections we outline our methods and estimate the limits on the s
of scalar couplings based on the indirect effects from charged pion decay. We use gen
operator techniques to obtain model independent results and we combine these results
data from pion decay and also muon capture, to constrain the scalar couplings indirectl
We also discuss some of the implications of these results and comment on prospe
future searches for scalar interactions.

2. Pion physics and new pseudoscalar interactions

Consider constructing an effective Lagrangian and matrix element for the pr
π± → l±νl in the presence of pseudoscalar interactions. We can set limits on the st
of the pseudoscalar interactions from their interference with tree levelW exchange. Sinc
the pion is a pseudoscalar, we can use the following relations for current matrix elem

〈0|ūγµγ5d
∣∣π(p)

〉 = i
√

2fπpµ,

〈0|ūγ5d
∣∣π(p)

〉 = i
√

2f̃π = i
√

2
fπm2

π

mu + md

,

〈0|ūσµνγ5d
∣∣π(p)

〉 = 0,

(1)〈0|ūσµνd
∣∣π(p)

〉 = 0,

wherefπ = 93 MeV andf̃π = 1.8× 105 MeV2. The matrix element for the tree levelW

contribution can easily be constructed by using Eq.(1), giving

(2)MW± = GFfπ cosθc

[
l̄γ µ(1− γ5)νl

]
pµ,
wherepµ is the pion momentum andθc is the Cabibbo angle. A pseudoscalar contribu-
tion with left-handed neutrinos in the final state can be expressed as a four-Fermi contact
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operator,

(3)LP = −i
ρ

2Λ2

[
l̄(1− γ5)νl

][ūγ5d],
whereρ is the pseudoscalar coupling constant. This expression can be converted to a
element using Eq.(1)

(4)MP = ρ
f̃π√
2Λ2

[
l̄(1− γ5)νl

]
.

In the presence of a pseudoscalar interaction, the overall matrix element for the p
π± → l±νl is the coherent sum,MP +MW± =Ml ,

(5)Ml = GF fπ cosθc

[
l̄γ µ(1− γ5)νl

]
pµ + ρf̃π√

2Λ2

[
l̄(1− γ5)νl

]
.

Having constructed the matrix element, we can now estimate the ratio of branching

(6)
Γ (π− → eνe)

Γ (π− → µνµ)
= (m2

π − m2
e)

(m2
π − m2

µ)

〈|Meν |2〉
〈|Mµν |2〉 .

Summing over final states of the squared matrix element we have

〈|Ml|2
〉 = 4G2

f f 2
π cos2 θcm

2
l

(
m2

π − m2
l

) + 8
GF f̃πfπ cosθcρ√

2Λ2
ml

(
m2

π − m2
l

)

(7)+ 2
ρ2f̃ 2

π

Λ4

(
m2

π − m2
l

)
.

For simplicity we have assumed that the pseudoscalar coupling is real, however, in g
ρ may be complex. The more general expression is obtained by making the foll
replacements:

ρ → ρ + ρ∗

2
= Re(ρ),

(8)(ρ)2 → |ρ|2.
We find that the branching ratio is given by

(9)
Γ (π− → eνe)

Γ (π− → µνµ)
= (m2

π − m2
e)

(m2
π − m2

µ)

[
m2

e(m
2
π − m2

e) + Re

m2
µ(m2

π − m2
µ) + Rµ

]
,

where theRe,µ functions are

Re,µ = √
2

f̃π Re(ρ)

GF fπΛ2 cosθc

me,µ

(
m2

π − m2
e,µ

)

(10)+ |ρ|2f̃ 2
π

2f 2
πG2

F Λ4 cos2 θc

(
m2

π − m2
e,µ

)
.

Thus far we have only discussed interactions with left-handed neutrinos in the final
state. The inclusion of right-handed neutrinos requires a modification since pseudoscalar
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contributions to decays with right-handed neutrinos in the final state cannot interfere wi
the W exchange graph; hence the contributionsto the rate add incoherently. With righ
handed neutrinos, the expression for the matrix element becomes

(11)MP = ρ′f̃π√
2Λ2

[
l̄(1+ γ5)νl

]
,

whereρ′ is the pseudoscalar coupling involving right-handed neutrinos. Defining

(12)T ≡ (m2
π − m2

e)
2

(m2
π − m2

µ)2

m2
e

m2
µ

= 1.28× 10−4,

we can express the branching ratio as

Γ (π− → eνe)

Γ (π− → µνµ)

(13)= T

( 1+ √
2 f̃π Re(ρe)

GF Λ2fπ cosθcme
+ |ρe |2f̃ 2

π

2G2
F Λ4f 2

π cos2 θcm2
e

+ |ρ′
e |2f̃ 2

π

2G2
F f 2

π Λ4 cos2 θcm2
e

1+ √
2 f̃π Re(ρµ)

GF Λ2fπ cosθcmµ
+ |ρµ|2f̃ 2

π

2G2
F Λ4f 2

π cos2 θcm2
µ

+ |ρ′
µ|2f̃ 2

π

2G2
F Λ4f 2

π cos2 θcm2
µ

)
.

If we assume either universal scalar couplings or else scalar couplings involving on
first generation, we obtain the following approximation for the ratio of decay widths:

Γ (π− → eνe)

Γ (π− → µνµ)

≈ T

(
1+ √

2
f̃π Re(ρ)

GF Λ2fπ cosθcme

+ |ρ|2f̃ 2
π

2G2
FΛ4f 2

π cos2 θcm2
e

(14)+ |ρ′|2f̃ 2
π

2G2
F Λ4f 2

π cos2 θcm2
e

)
.

We will discuss the effects of more general generation dependence of the scalar co
in Section6. The theoretical standard model calculation including radiative correctio
Brth = (1.2352± 0.0005) × 10−4 [7] and the measured experimental branching rati
Brexp = (1.230± 0.0040) × 10−4 [1,8–10]. Combining the experimental and theoreti
uncertainties in quadrature, we can obtain a bound on the pseudoscalar couplings aσ ,

−1.0× 10−2

�
√

2
f̃π Re(ρ)

GF Λ2fπ cosθcme

+ |ρ|2f̃ 2
π

2G2
F Λ4f 2

π cos2 θcm2
e

+ |ρ′|2f̃ 2
π

2G2
FΛ4f 2

π cos2 θcm2
e

(15)� 2.2× 10−3.

3. Local scalar operator analysis
Electroweak interactions can radiatively induce pseudoscalar operators from pure scalar
interactions. Suppose that at some scaleΛ there exists new physics that generates a purely
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Fig. 1.O1 andO2, type A contact interactions.

Fig. 2. Example of electroweak corrections to type A contactinteractions. All permutations are required including

wavefunction renormalization; the vector bosons are theW
1,2,3
µ andBµ.

scalar four-Fermi interaction. It may be due to the exchange of fundamental scala
may be due to a variety of other physics such as compositeness, extra dimensions
quarks, et cetera. Independent of the details of the new physics that generates th
interactions, they will appear as non-renormalizable four-Fermi scalar contact operato
below the scaleΛ.

In order to facilitate power counting, theMS scheme is most often used with effect
field theory[11]. TheMS scheme (or any mass independent subtraction scheme) pr
the subtlety that heavy particles do not decouple in beta function calculations. T
mass independent renormalization schemes donot satisfy the conditions of the Applequis
Carazzone theorem[11]. This is dealt with by simply integrating out the heavy fields
hand at their associated scale. Thus whether we analyze the effective interactions in a U
complete theory or in the effective theory, we will arrive at the same renormalization g
running (up to threshold corrections) provided that we are only interested in results
Λ and only up to some finite power of( 1

Λ
).

We start by considering SU(2) × U(1) invariant four-fermion contact interactions th
are generation independent and flavour diagonal (seeFigs. 1 and 4). We will discuss the
effects of generation dependence in Section6. We consider two types of scalar operators
order to facilitate comparison with the direct experimental constraints. Type A (OA) have
left-handed neutrinos in the final state while type B (OB) have right-handed (sterile) ne
trinos. These interactions appear as extensions to the standard model Lagrangian in
non-renormalizable operators,

(16)Lscalar= sA

Λ2OA + sB

Λ2OB,

wheresA andsB are undetermined scalar couplings. From these interactions, electro
radiative corrections (seeFigs. 2 and 5) can in principle induce pseudoscalar interactio

1
We retain corrections up to order
Λ2 and from this analysis we extract the anomalous

dimension matrix.
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3.1. Type A operator analysis: OA

The operators of type A are as follows:

(17)O1 = [ēRL][Q̄dR],
(18)O2 = [ēRL][ūRQ]

(where the SU(2) indices have been suppressed) such that the pure scalar interactio

(19)OA = O1 + O2.

Since we are assuming that at the scaleΛ there is a pure scalar interaction, we takeO1 and
O2 to enter the theory at the high scale with equal weight.

In calculating the anomalous dimension matrix a third operator is generated th
renormalization: the operatorO ′ = [ēRQ][ūRL] mixes with the other two. However, i
order to construct the matrix element for the pion decay amplitude, we need to rota
operators to a basis that has a definite matrixelement between the vacuum and the on-s
pion state. This requires Fierz reordering

(20)O ′ = −1

2
O2 +

(
−1

8

)[
ēRσµνL

][
ūRσµνQ

]
,

where we define

(21)O3 ≡
(

−1

8

)[
ēRσµνL

][
ūRσµνQ

]
.

Note that〈0|O3|π(p)〉 = 0. This leaves us with the following beta functions:

(22)µ
∂(O)

∂µ
= 1

32π2γO,

where

(23)O =
(

O1
O2
O3

)

and

(24)γ =



6g2 + 98
9 g′2 0 0

0 6g2 + 128
9 g′2 6g2 + 10g′2

0 9
2g2 + 15

2 g′2 12g2 + 103
9 g′2


 .

The constantsg′ andg are the U(1) and SU(2) coupling constants, respectively. The resu
of the numerical integration of the renormalization group equations are displayed inFig. 3.
O1 andO2 start out with equal amplitude at the scaleΛ. They are then renormalized to th
weak scale of roughly 100 GeV. In the first panel thex-axis indicates the starting scaleΛ,
i.e., the scale of new physics. They-axis indicates the amount each operator is suppre
in running from the scaleΛ to the weak scale. Each operator renormalizes differently an
the splittings give rise to the pseudoscalar interaction. If the scaleΛ is at or very near the
weak scale then threshold effects become important, which we will discuss in the foll

section. The second panel plots the difference ofO1 andO2 as a function of scale. This
difference is proportional to the amount of pseudoscalar interaction induced.



displays

e-
B.A. Campbell, D.W. Maybury / Nuclear Physics B 709 (2005) 419–439 425

Fig. 3. Type A operator RGE analysis. Panel (a) shows how each operator evolves with scale. Panel (b)
the induced pseudoscalar proportionality factor.

Fig. 4.O1 andO2, type B contact interactions.

Fig. 5. Example of electroweak corrections to type B contactinteractions. All permutations are required including

wavefunction renormalization; the vector bosons are theW
1,2,3
µ andBµ.

3.2. Type B operator analysis: OB

The type B operators are as follows:

(25)O1 = [L̄νR][Q̄dR],
(26)O2 = [L̄νR][ūRQ]

(where the SU(2) indices have been suppressed) with

(27)OB = O1 + O2.

We assume that the interaction at the scaleΛ is purely scalar as in the type A sc

nario. Again operator mixing is present with a third induced operator, namelyO ′ =
[L̄dR][Q̄νR] which must be rotated as before into the appropriate basis:O ′ = −1

2O2 +
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Fig. 6. Type B operator RGE analysis. Panel (a) shows how each operator evolves with scale. Panel (b)
the induced pseudoscalar proportionality factor.

(−1
8)[L̄σµννR][Q̄σµνdR] whereO3 = (−1

8)[L̄σµννR][Q̄σµνdR]. We extract the follow-
ing anomalous dimension matrix:

(28)µ
∂(O)

∂µ
= 1

32π2γO,

where

(29)O =
(

O1
O2
O3

)

and

(30)γ =



6g2 + 38
9 g′2 0 0

0 6g2 + 11
9 g′2 6g2 − 2

3g′2

0 9
2g2 − 1

3g′2 12g2 + 34
9 g′2


 .

The results of the numerical integration of the renormalization group equations ar
played inFig. 6. As we have seen before in Section3.1 the graphs inFig. 6 illustrate
the effects of renormalization on the operatorsO1 andO2 when they enter with the sam
amplitude at the scaleΛ.

In both type A and B scalar interactions we see that renormalization effects ind
pseudoscalar interaction. The size of the pseudoscalar interaction depends on how
scaleΛ is from the weak scale. The larger the scale separation is, the larger the induc
pseudoscalar proportionality factor becomes.The effective pseudoscalar couplings, wh
we denoted asρ andρ′ in Section2, are given by

ρ = sA∆A(Λ),
(31)ρ′ = sB∆B(Λ),
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where∆A and∆B are the renormalization group factors induced from the running f
the scaleΛ down to the weak scale (∆A and∆B are plotted in the second panel ofFigs. 3
and 6). The factorssA andsB are the undetermined scalar coupling constants introd
in Eq. (16). Since the pseudoscalar is induced from a scalar interaction we are no
position to place limits on the magnitude of the scalar coupling from pion physics; th
scalar couplingssA andsB at the scale of the new physicsΛ are now constrained by th
requirement thatρ andρ′ satisfy Eq.(15).

A comment on QCD corrections is in order. QCD is a parity invariant theory and t
fore QCD corrections cannot induce a pseudoscalar interaction by themselves.
analysis, the induced pseudoscalar arises from the difference of two operators th
tially combined to give a purely scalar interaction and the QCD corrections will affec
two operators in the same way. The QCD corrections can only adjust this differen
an overall multiplicative factor. This is true for both operators of type A and B. Howe
in Section5 we compare the direct experimental constraints on scalar couplings frβ

decay to the indirect constraints on the renormalization induced pseudoscalar interactio
from pion decay. Since the same scalar operators are involved in both processes, the QC
effects are the same for each case and therefore will cancel in a comparison of the relativ
strengths of the limits from the two processes. The largest part of the QCD renormali
of the scalar operators (and hence of their weak interaction induced pseudoscalar
ence) will come from the QCD induced running from the weak scale down to the c
symmetry breaking scale, of order 4πfπ ≈ 1 GeV[12], where we take the pion decay m
trix element using PCAC. The correction toeach of the operators can be computed thro
the QCD renormalization group running of these operators

(32)OA,B(1 GeV) =
(

αs(1 GeV2)

αs(M
2
W)

)4/21

OA,B(Mw) ≈ 1.3OA,B(Mw)

for ΛQCD = 200 MeV. The induced pseudoscalar, which is proportional to∆A,B , will be
enhanced by this factor of 1.3.

4. Pseudoscalar interactions from threshold effects

A limitation of the renormalization group operator analysis of the last section is its
plicability if the scale of new physics is at or very near the electroweak scale. In this ca
threshold effects become the dominate contribution. To estimate the threshold effe
consider a toy model where a VEVless scalar doublet is added to the standard mo
deed it is only for the exchange of a scalar doublet that we need to consider a p
scale for new physics near the electroweak scale. For leptoquarks, compositeness,
tra dimensional gravity, direct experimental constraints imply[1] that the scaleΛ of new
physics is sufficiently above the electroweak scale that RGE running dominates thr
effects. In principle, the addition of a VEVless scalar doublet can lead to both scalar
pseudoscalar interactions in the tree level Lagrangian. Since pseudoscalar interact

directly constrained by tree level contributions to pion decay and we are presently inter-
ested in limits on pure scalar interactions, we arrange the couplings such that only scalar
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Fig. 7. DressedZ0 exchange diagrams.

Fig. 8. DressedW exchange diagrams.

Fig. 9. Radiative correctionsto the quark-scalar vertex.

interactions arise at the scale of new physics,

(33)L = (λ)L̄eRS + (λ′)Q̄dRS − (λ′)Q̄uRS̃ + h.c.,

where λ and λ′ are the scalar couplings to the quarks and leptons, respectively
S̃ = iσ 2S. In this working example, the scalar interactions have the property that
couple in a universal and flavour diagonal manner with undetermined scalar coupli
quarks and leptons. It is the charged scalar couplings that theβ-decay experiments con
strain directly. The pseudoscalar interaction can potentially be induced at one loop th
three classes of diagrams: scalar-dressedZ exchange box diagrams, scalar-dressedW ex-
change box diagrams and radiative corrections to the quark vertex (seeFigs. 7–9). The
weak interactions do not respect parity and the scalar interactions change chiralit
diagrams of this form can potentially induce a pseudoscalar interaction. To estima
effect of the scalar on the branching ratio, we will make the approximation that the q
are massless and ignore external momenta. Box diagrams that involve the Higgs

Goldstone modes can be ignored since the couplings are mass proportional and hence their
contribution is small.
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By explicit calculation we can show that while both the dressedW andZ exchange box
diagrams give non-zero amplitudes, their tensor structure is such that after taking the matrix
element between the pion and the vacuum they give vanishing contributions. In the
correction class of diagrams we are dealing with primitively divergent graphs (seeFig. 9).
In order to obtain a conservative estimate of the induced pseudoscalar arising alread
threshold effects, we can regulate the loop diagrams by cutting off the loop mome
at the weak scale and integrate from 0 toMZ . Cutting off the loop momentum atMZ

represents a conservative estimate, in that the scale of new physics is at the weak s
therefore there is no scale separation for renormalization group running proper. In th
we find a non-vanishing contribution. The three graphs inFig. 9 give the following result
for the pion decay matrix element:

MVertex= −
√

2g2f̃πλλ′

64π2 cos2 θwM2
Z

×
[(

−4

3
sin2 θw

)
ln(2) + cos(2θw)

(
ln(2) − 1

2

)][
l̄(1− γ5)νl

]

(34)≈ 0.13

√
2g2f̃πλλ′

64π2cos2 θwM2
Z

[
l̄(1− γ5)νl

]
.

To get a second, independent, estimate of the threshold corrections, in a different reno
malization prescription, we will imagine integrating out the weak scale degrees of fre
(W , Z and scalars) to get an effective low-energy theory. The resulting theory will
only dimension six four-fermion operators; to simplify our calculation let us imagine
ting the scalar masses just below the mass of theW andZ and integrating out theW and
Z first and then immediately integrating out the scalars, thus inducing the four-fe
operators. If we use a dimensionless regulator, the effective fermion-scalar theory aft
integrating out theW andZ will have Yukawa couplings shifted by threshold effects n
essary to reproduce the residual effects of theW andZ in the resulting effective theor
in which they are absent. These threshold corrections have been computed in[13,14]. We
then immediately integrate out the scalars, with their corrected Yukawa couplings, to g
the final low-energy effective theory of fermions with four-fermion couplings. Using
results for the threshold corrections for Yukawa couplings from[13,14], with the gauge
charge representations of our particles, and then immediately integrating out the sc
the weak scale (which we take to beMZ) we get an effective induced interaction from t
vertex corrections of

(35)MVertex≈ 0.08

√
2g2f̃πλλ′

64π2cos2 θwM2
Z

[
l̄(1− γ5)νl

]
.

That the estimates of Eqs.(34) and (35), which use two entirely different regularizatio
and renormalization prescriptions, agree to within a factor of two gives us confidenc
estimates of the threshold corrections are of this order and are not artifacts of the regula
chosen. To be conservative, we will use the estimate of Eq.(35)which in conjunction with
Eq.(15)and in the absence of right-handed neutrinos gives
(36)−3× 10−2 � Ks

GF

� 6× 10−3,
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where

(37)|Ks | ≡ λλ′

M2
Z

.

The above calculation gives a conservative estimate of the amplitude, including only c
butions from threshold effects. We see in this toy example that even from threshold e
alone a pseudoscalar interaction will be radiatively induced.

5. Comparison with β-decay constraints

We can compare our bounds on scalar currents, with those arising in nuclearβ-decay.
The effective Hamiltonian for allowedβ-decay has the general Lorentz form[15]

H = GF√
2

{
(ψ̄pγµψn)(CV ψ̄eγµψν + C′

V ψ̄eγµγ5ψν)

+ (ψ̄pγµγ5ψn)(CAψ̄eγµψν + C′
Aψ̄eγµγ5ψν)

+ (ψpψn)(CSψ̄eψν + C′
Sψ̄eγ5ψν)

(38)+ 1

2
(ψ̄pσλµψn)(CT ψ̄eσλµψν + C′

T ψ̄eσλµγ5ψν)

}
.

A pseudoscalar term has not been included since it vanishes to leading order in nuβ

decay. In the absence of right-handed currents,Ci = C′
i and as we have mentioned befo

we consider purely scalar interactions. (Note that in the above,1+γ5
2 is taken to be the lef

projector. This is opposite to our convention in the preceding sections. However by
this convention in this section, it will be easier to compare with theβ-decay literature.
The transition probability per unit time is given by[15]

(39)wif = ξ

4π3
peEe(Emax− Ee)

(
1+ ave cosθ + b

2me

Ee

)
sinθ dθ,

whereEmax is the maximum energy of the electron in beta decay,ve = pe/Ee and

ξ = 1

2
|MF |2(|CV |2 + |C′

V |2 + |CS |2 + |C′
S |2)

+ 1

2
|MGT |2(|CA|2 + |C′

A|2 + |CT |2 + |C′
T |2),

aξ = 1

2
|MF |2(|CV |2 + |C′

V |2 − |CS |2 − |C′
S |2)

− 1

6
|MGT |2(|CA|2 + |C′

A|2 − |CT |2 − |C′
T |2),

(40)bξ = 1

2
Re

(
CSC∗

V + C′
SC′ ∗

V

)|MF |2 + 1

2
Re

(
CT C∗

A + C′
T C′ ∗

A

)|MGT |2.
The angle,θ , is the angle between the electron and neutrino momenta andb is the Fierz

interference term. The direct searches[2–4] for scalar interactions inβ-decay consider
pure Fermi transitions 0+ → 0+ as the parametera has a particularly simple form. In this
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case the Gamow–Teller matrix elements are absent and the Fermi matrix elements divi
out

(41)a = |CV |2 + |C′
V |2 − |CS |2 − |C′

S |2
|CV |2 + |C′

V |2 + |CS |2 + |C′
S |2 .

Since in the standard modelCV = C′
V = 1, a 	= 1 implies evidence for an effective scal

interaction.
We need to rewrite our expressions for scalar interactions in terms ofC̃s andC̃′

s where
C̃i = Ci/CV . The scalar couplings can be re-expressed

(42)SA = Λ2GF cosθc√
2

(C̃s + C̃′
s ),

(43)SB = Λ2GF cosθc√
2

(C̃s − C̃′
s ),

where theSA,SB denote scalar interactions at the nucleon level. The operator an
of Section3 was completed with quarks, thus we need to include the scalar form fact
〈p|ūd|n〉 which can be estimated from lattice calculations[16], 〈p|ūd|n〉 ≈ 0.65± 0.09.
By saturating the error in this quantity, we can obtain a conservative 2σ constraint equation
on the scalar couplings from pion decay (see Eq.(15))

−1.0× 10−2

� 1

0.74

f̃π∆A

fπme

Re(C̃s + C̃′
s ) + 1

0.742

∆2
Af̃ 2

π

f 2
πm2

e

|C̃s + C̃′
s |2 + 1

0.742

∆2
Bf̃ 2

π

f 2
πm2

e

|C̃s − C̃′
s |2

(44)� 2.2× 10−3.

If we include only left-handed neutrinos in the theory, we are constrained to lie alon
line C̃s = C̃′

s whereas if we include only right-handed neutrinos we are forced to lie a
C̃s = −C̃′

s . We can now examine a few special cases.
In the absence of right-handed neutrinos, if we considerCs andC′

s to be purely real and
the scaleΛ of the order of 200 GeV, the indirect limits fromπ± → l±νl decay give us the
limit

(45)−1.2× 10−3 � C̃s � 2.7× 10−4.

For comparison, the experimental 90% confidence limit determined from the b-Fie
terference term inβ-decay (see Eq.(40)) is |Re(C̃s)| � 8 × 10−3 [3,5]. We see that the
indirect limit from pion decay is stronger by over an order of magnitude. On the oth
hand, if we considerCs andC′

s to be purely imaginary; again in the limit of left-hand
couplings we obtain

(46)|C̃s | � 1.2× 10−2

where the scaleΛ is of the order of 200 GeV. Again for comparison, the experime
limit on the size of the imaginary part at the 95% confidence level, with only left-ha

neutrinos, is approximately| Im(C̃s)| � 1 × 10−1 [3]. The indirectπ± → l±νl limit is
stronger by approximately an order of magnitude. If we takeC̃s = −C̃′

s so that we are in



of
he
lid

een

g
lar

results
traints

e the
432 B.A. Campbell, D.W. Maybury / Nuclear Physics B 709 (2005) 419–439

Fig. 10. Constraint plots on the real parts ofC̃s and C̃′
s at Λ = 200 GeV. Panel (a) corresponds to a phase

0◦; panel (b) to±45◦; and panel (c) to 45◦ and−45◦ for C̃s and C̃′
s , respectively. The diagonal band is t

experimental limit set by the b-Fierz interference term fromβ-decay at the 90% confidence level and the so
annulus is the approximate experimental bound given in[3]. In all cases, the allowed region is the band betw
the two ellipses. An enlargement of the figures is displayed inFig. 11.

the limit of right-handed couplings and the b-Fierz interference term vanishes we find

(47)|C̃s | � 1.0× 10−2.

Again for comparison, at 1σ , the direct experimental constraint is|C̃s | � 6 × 10−2 [3].
In each case presented the scale of new physics was atΛ = 200 GeV correspondin
to ∆A(200 GeV) ≈ 7.7 × 10−4, ∆B(200 GeV) ≈ 8.9 × 10−4. Because the pseudosca
interactions are induced through renormalization group running fromΛ down to the elec-
troweak scale, the higher the scale of new physics is, the more competitive our
become relative to beta decay. As the scale of new physics is lowered, the cons
from π± → l±νl become less stringent. However even in the worst case limit wher

new scale is at theZ-mass and therefore we would no longer have an interval of renor-
malization group running, the renormalization threshold effects calculated in Eq.(36) are
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Fig. 11. Constraint plots on the real parts ofC̃s and C̃′
s at Λ = 200 GeV. Panel (a) corresponds to a phase

0◦; panel (b) to±45◦; and panel (c) to 45◦ and−45◦ for C̃s and C̃′
s , respectively. The diagonal band is t

experimental limit set by the b-Fierz interference term fromβ-decay at the 90% confidence level. In all cas
the allowed region is the band between the two ellipses. The enlarged area more clearly shows the wid
region.

still competitive. As an example, if we takeCs andC′
s to be real and ignore right-hande

neutrinos we find that

(48)−2× 10−2 � C̃s � 4× 10−3.

Plots of the pion physics constraints for the more general situation (where the re
imaginary parts ofCs andC′

s vary independently) are given inFigs. 10–13. We plot the
constraints for the real and imaginary parts separately. Note from Eq.(44) that the phase
of Cs andC′

s are important when constructing these separate plots. In order to conv
effects of the phases most clearly, we have chosen three interesting cases. In the real p
we consider:Cs andC′

s to each have a phase of 0◦; Cs andC′
s to each have a phase

±45◦; and the situation whereCs has as a phase of 45◦ andC′
s has a phase of−45◦. In
the imaginary plots we consider:Cs andC′
s to each have a phase of±90◦; Cs andC′

s each
have a phase of±45◦; and the case whereCs has a phase of 45◦ andC′

s has a phase of
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Fig. 12. Constraint plots on the imaginary parts ofC̃s andC̃′
s at Λ = 200 GeV. Panel (a) corresponds to a ph

of ±90◦ ; panel (b) to±45◦; and panel (c) to 45◦ and−45◦ for C̃s andC̃′
s , respectively. The solid ellipse is th

approximate experimental bound on the imaginary part of the couplings assuming nothing about the phase[3].
In panel (a), the unshaded interior ellipse is the constraint from pion decay. In the remaining plots, the
region is the band between the two ellipses. An enlargement of the figures is displayed inFig. 13.

−45◦. All three plots in the imaginary case are well within the region allowed by the d
experimental bounds[3,17].

There are two points of interest that warrant further discussion. First, note that
limit of sufficiently large phases (i.e.,> 85◦) the ellipse bound inFig. 11moves entirely
inside the b-Fierz interference limit allowed region. This is expected since phase
proaching 90◦ imply thatCs andC′

s are almost completely imaginary. When this situat
occurs and we are in the limit of left-handed couplings (i.e., along the lineCs = C′

s ), there
are two solutions consistent with the pion physics constraints and the b-Fierz interf
bound. One solution is centered around 0 and the other is centered off 0 along t
Cs = C′

s yet inside the b-Fierz interference limits. Even in these cases, the width o

ellipse bound is still of the order of 2× 10−3. Secondly, in order to move from the origin
along the ellipse by more than the width of the allowed region requires a delicate cancel-
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Fig. 13. Constraint plots on the imaginary parts ofC̃s andC̃′
s at Λ = 200 GeV. Panel (a) corresponds to a ph

of ±90◦; panel (b) to±45◦; and panel (c) to 45◦ and−45◦ for C̃s andC̃′
s , respectively. In panel (a), the interio

of the ellipse is the constraint. In the remaining plots, the allowed region is the band between the two ellips
The enlarged area more clearly shows the width of the region.

lation between the terms in Eq.(44). If we ignore the possibility of this cancellation, th
region allowed by pion decay would collapse to a small region near the origin of leng
given by the width of the ellipse bounds.

6. Flavour dependent couplings

Thus far we have obtained limits on scalar interactions in the limit of universal fla
couplings. Let us now relax this assumption. One case that deserves attention is the
mass proportional couplings. This implies thatRe/(m

2
e(m

2
π −m2

e)) = Rµ/(m2
µ(m2

π −m2
µ))

in Eq.(10)and therefore there is no effect on the pion branching ratio

Γ (π− → eνe) (m2 − m2)
[

m2(m2 − m2) + Se

]

(49)

Γ (π− → µνµ)
= π e

(m2
π − m2

µ)

e π e

m2
µ(m2

π − m2
µ) + Sµ

= T .
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Fig. 14. Constraint plots on the|Ce| and |Cµ| couplings atΛ = 200 GeV. Panel (a) corresponds to phases
Ce andCµ of 0◦, 0◦; panel (b) to 90◦, 90◦; panel (c) to 180◦ , 180◦; panel (d) to±45◦, ±45◦, respectively. The
allowed region is the bounded area in the lower left corner. The horizontal line is the muon capture bound[18].

This observation also holds in the presence of right-handed neutrinos. However,
case, we still can bound the scalar couplings involved inβ-decay by combining theπ± →
l±νl limits with data from muon capture experiments. Recent experiments and analysis
muon capture on3He indicate that the muon–nucleon scalar coupling is bounded by[18]

(50)
|Sµ|
Λ2 � 4× 10−2GF

with a neutrino of left-handed chirality. Therefore, in the limit of mass proportional
plings,Se/Λ

2 must be of the order of 200 times smaller due to the electron–muon
ratio. This implies that̃Cs is bounded

(51)|C̃s | � 2× 10−4.

In order to estimate the degree to which the presence of muon scalar interactio

weaken the limits that we infer fromπ± → l±νl , let us assume that the muon scalar cou-
pling saturates the experimental bound Eq.(50). Substituting this into the expression for
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the pion branching ratio Eq.(13), ignoring right-handed neutrinos and assuming a scaΛ

of 200 GeV, Eq.(15) is modified to the following form:

(52)−3.3× 10−2 �
√

2
f̃π Re(ρ)

GF Λ2fπ cosθcme

+ |ρ|2f̃ 2
π

2G2
F Λ4f 2

π cos2 θcm2
e

� 7.3× 10−3.

We find this conservative approach has the effect of weakening our limits a factor of
at most compared to the analysis in Section5. The limits on scalar couplings withΛ =
200 GeV, fromπ± → l±νl combined with muon capture scalar limits, are substant
stronger than limits on scalar couplings from directβ-decay searches.

Finally, we consider the allowed region for the electron-scalar and muon-scala
plings in a model independent manner. Again the constraint equation derived from Eq.(13)
is

(53)−1.0× 10−2 �
(

1+ √
2f̃π Re(Ce)∆A

fπ cosθcme
+ |Ce|2∆2

Af̃ 2
π

2f 2
π cos2 θcm2

e

1+ √
2f̃π Re(Cµ)∆A

fπ cosθcmµ
+ |Cµ|2∆2

Af̃ 2
π

2f 2
π cos2 θcm2

µ

− 1

)
� 2.2× 10−3,

where

(54)Cµ = Sµ

GF Λ2
, Ce = Se

GF Λ2
.

We display the results inFig. 14for a number of different phase conditions. We consi
the cases where the complex phase ofCe andCµ are 0◦, 0◦; 90◦, 90◦; 180◦, 180◦; ±45◦,
±45◦, respectively.

7. Discussion

By considering renormalization effects on universal (or alternatively first generation
and flavour diagonal scalar operators, we have derived limits on the size of the
between scalar and vector couplingsfrom precision measurements ofπ± → l±νl de-
cay. As a typical constraint value, in the absence right-handed neutrinos, we fin
−1.2× 10−3 � C̃s � 2.7× 10−4 for Λ of the order of 200 GeV. A more general compa
son with theβ-decay experiments (with the inclusionof right-handed neutrinos) is made
the plots inFigs. 11 and 13. We note that the most conservative estimate of the limits oc
when the new physics arises at the electroweak scale. In this case, the contributio
induced pseudoscalar comes entirely from threshold corrections which we estimat
the calculations in Section4. The limit for real couplings in the absence of right-hand
neutrinos from threshold contributions is−3 × 10−2 � C̃s � 6 × 10−3. In the scenario
where we have arbitrary generation dependence of the scalar couplings,π± → l±νl lim-
its can be combined with limits on scalar interactions in muon capture to bound th
generation scalar couplings. These limits are illustrated in particular cases inFig. 14.

These observations have implications for currentβ-decay experiments. Direct search
for scalar interactions inβ-decay will be most competitive if the new physics respons

for the effective scalar interactions arises atthe electroweak scale in the explicit exchange
of new scalar particles. In these circumstances, the indirect limits from threshold induced
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pseudoscalar interactions, Eq.(48), are comparable to the directβ-decay scalar searche
Therefore, interest in searchesfor new scalar interactions withβ-decay experiments re
mains undiminished.

On the other hand, for new effective scalarinteractions arising as effective SU(2)×U(1)

invariant operators at mass scales above 200 GeV (as expected in models with lepto
composite quarks/leptons, or low scale quantum gravity) the constraints arising fro
precision measurements ofπ± → l±νl decay, combined with limits on scalar interactio
in muon capture, can be stronger by an order of magnitude or more than the dire
perimental searches. Furthermore, the relative strength of these searches becomes be
the higher the mass scale of the new physics compared to the electroweak scale.
gues strongly for improved experimental precision in measurements of muon captu
π± → l±νl decay. In particular we note that in the case of pion decay, the exper
tal error exceeds the uncertainty in the theoretical calculation by a factor of eight. A ne
measurement ofπ± → l±νl decay with an order of magnitude greater precision would n
only constrain physics beyond the standard model which could potentially contrib
tree level pion decay, but as we have argued above, will also indirectly provide tests
scalar interactions of unparalleled precision.
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