

Canada's national laboratory for particle and nuclear physics /Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Search for Massive Neutrinos in the decay $\pi^+ \rightarrow e^+ \nu$

Chloé Malbrunot

For the PIENU Collaboration

M. Aoki⁴, M. Blecher⁸, D. Bryman⁶, S. Chen⁹, M.Ding⁹, L. Doria⁵, P. Gumplinger⁵, C. Hurst⁶,
A. Hussein⁷, Y. Igarashi³, N. Ito⁴, S. Kettell², L. Kurchaninov⁵, L. Littenberg², C. Malbrunot⁶, T. Numao⁵, R. Poutissou⁵, A. Sher⁵, T. Sullivan⁶, D. Vavilov⁵, K. Yamada⁴, Y. Yoshida³

- 1. Arizona State University
- 2. Brookhaven National Laboratory
- 3. KEK
- 4. Osaka University
- 5. TRIUMF

- 6. University of British Columbia
- 7. University of Northern British Columbia
- 9. Virginia Polytechnic Institute & State University
- 10. Tsinghua University

PANIC 2011

PIENU

Experiment ★★★★ Analysis Conclusion $\star \star \star \star \star$

$\pi \rightarrow ev$ decay and massive v

Because of helicity the $\pi^+ \rightarrow e^+ \nu$ decay is **suppressed** over the $\pi^+ \rightarrow \mu^+ \nu$ decay by a factor $(m_e/m_\mu)^2$

$$R_{e/\mu}^{SM} = \frac{\Gamma(\pi \to e\nu + \pi \to e\nu\gamma)}{\Gamma(\pi \to \mu\nu + \pi \to \mu\nu\gamma)} = 1.2352(1) \times 10^{-4}$$

(For measurement of the pion branching ratio at TRIUMF, see Talk : C.Malbrunot -Parallel 5G - Lepton Universality and Forward Jets)

The presence of a heavy neutrino **changes this helicity relation** and alter the value of the branching ratio

$$\begin{bmatrix} \mathbf{\mu} \\ \mathbf{v}_{e} \end{bmatrix} \begin{bmatrix} \mathbf{\mu} \\ \mathbf{v}_{\mu} \end{bmatrix} \begin{bmatrix} \mathbf{\tau} \\ \mathbf{v}_{\tau} \end{bmatrix} + \mathbf{v}_{\chi_{1}} \dots \mathbf{v}_{\chi_{\kappa}}$$
$$\nu_{\ell} = \sum_{i=1}^{3+k} U_{\ell i} \nu_{i}$$
$$\ell = e, \mu, \tau, \chi_{1}, \chi_{2} \dots \chi_{k}$$

e.g. Neutrino Minimal Standard Model A. Boyarsky et al., Ann. Rev. Nucl. Sci., 59 191 (2009) T. Asaka et al., JHEP 1104, 11 (2011)

Decay Positron Energy

07/28/2011

Experiment $\Rightarrow \Rightarrow \Rightarrow \Rightarrow$

Conclusion

Experimental Technique

Analysis

 $\star \star \star \star \star$

Theory Experiment Analysis Conclusion * * * * * * * * * * * * * The PIENU detector

07/28/2011

🛞 PIENU

PIENU II is movable and detachable from PIENU I for line shape measurement at various e+ entrance angles

07/28/2011

50 kHz pion stop in Target with 2% positrons and 10% muons

Triggers : 600Hz

▷ $\pi \rightarrow e \nu$: Early (2-50 ns)

 \checkmark

Inspection period -300ns to 500ns

- ▷ $\pi \rightarrow \mu \rightarrow e$: Prescaled (1/16)
- monitor and calibration triggers: e⁺ beam, Xe, cosmic-ray

Waveforms are recorded

A. Aguilar-Arevalo et al., Nucl. Instr. and Meth. A 609 (2009)

07/28/2011

\checkmark

Experiment $\bigstar \bigstar \bigstar \bigstar \bigstar$ Conclusion

Suppression of background

Conclusion

Summary of cuts :

PIENU

- Time cut (takes advantage of the difference in lifetimes)
- Target energy cut *
- kink cut
- Pulse Shape cut

- Z vertex * - Csl veto * - Radial cut in WC3 * < 54 MeVS =Optimization of cuts by minimizing $N_{>54MeV}$ 10^{2} Britton et al. Exp. 10^{2} Counts This analysis All cuts Positron energy [MeV] 07/28/2011

* Cuts with energy dependence

Tighter angular cuts = better peak resolution Only effective above 47 MeV Analysis region divided : 1) 0-47 MeV : no angular cut 2) 47-60 MeV : 35 deg cut

Response function of the calorimeter was measured with a positron beam at various angles. **Photo-nuclear reactions** in the Nal crystal were discovered

A. Aguilar-Arevalo et al., Nucl. Instr. and Meth. A (2010)

Neutrons are generated by photo-nuclear reactions $I(\gamma,n)$ in NaI.

If the neutron escapes from the crystal, the separation energy

of the neutron is lost.

The lineshape spectrum is **subtracted** from the pienu data before performing the massive neutrino search

07/28/2011

Theory Experiment Analysis Conclusion Massive neutrino search

Search for extra peak in the suppressed spectrum

Components of the fit:

- π -µ-e (Michel spectrum for t = 150-500 ns)
- µDIF (distorted Michel spectrum)
- A*exp(B*t) + C (to simulate background and tail)
- Extra peak (MC generated)

Fitting regions : 9-62 MeV (35 degree cut) 9-50 MeV (No angle cut)

0.5 MeV steps. Peak position fixed. Fit over entire energy region.

μDIF

Energy spectrum for µDAR and µDIF

Positron energy [MeV]

Entries 613313

35.69

10.2

Mean

RMS

π-μ-e

μ DAR

Theory

Experiment 🖈 🖈 🛧 🖈 Conclusion

Results

ry Experiment ★★★★

 \bigstar

Analysis ★★★★★

Conclusior

Conclusions

	2008	09	End of beamline extension work
		10-12	Test run
	2009	05	PIENU detector completed
		05-09	Run I
		09-12	Run II
	2010	03	Temperature enclosure completed
		04-09	Run III
		10-12	Run IV
	2011	08-12	Run V
/	2012		Run VI

Data used for this analysis

1/2 million $\pi^+ \rightarrow e^+$ events after selection cuts

ry Experiment ★★★★

 \checkmark

nt Analysis ★★★★★ Conclusic

Conclusions

	2008	09	End of beamline extension work
		10-12	Test run
	2009	05	PIENU detector completed
		05-09	Run I
		09-12	Run II
	2010	03	Temperature enclosure completed
		04-09	Run III
		10-12	Run IV
	2011	08-12	Run V
	2012		Run VI

Data used for this analysis

1/2 million $\pi^+ \rightarrow e^+$ events after selection cuts

6 million $\pi^+ \rightarrow e^+$ events accumulated so far