Nuclear Effects in a NaI Crystal Luca Doria TRIUMF (PiENu Collaboration)

A. Aguilar-Arevalo⁵, M. Aoki⁴, M. Blecher⁹, <u>D. Bryman⁶</u>,
J. Comfort¹, L. Doria⁵, P. Gumplinger⁵, A. Hussein⁷, N. Ito⁴, S. Kettell²,
L. Kurchaninov⁵, C. Malbrunot⁶, G. Marshall⁵, <u>T. Numao⁵</u>,
R. Poutissou⁵, F. Retiere⁵, A. Sandorfi², A. Sher⁵, K. Yamada⁴

Arizona State University, 2. Brookhaven National Laboratory,
 KEK, 4. Osaka University, 5. TRIUMF, 6. University of British Columbia
 University of Northern British Columbia, 8. University of Glasgow
 Virginia Tech.

The PiENu Experiment

Aim: Precision measurement of the branching ratio:

$$R_{e/\mu} = \frac{\Gamma(\pi \to e \nu + \pi \to e \nu \gamma)}{\Gamma(\pi \to \mu \nu + \pi \to \mu \nu \gamma)}$$

Standard Model Prediction: $R_{e/\mu}^{SM} = 1.2353(1) \times 10^{-4}$

The most precise SM weak interaction calculation involving quarks (<0.01%)

Experimental Results:

 $R_{e/\mu}^{\exp} = 1.2265 \pm 0.0034(stat) \pm 0.0044(syst) \times 10^{-4}$ TRIUMF ('92) $R_{e/\mu}^{\exp} = 1.2346 \pm 0.0035(stat) \pm 0.0036(syst) \times 10^{-4}$ PSI ('93) $R_{e/\mu}^{\exp} = 1.231 \pm 0.004(stat) \times 10^{-4}$ Average

GOAL: From 0.4%-0.5% precision to <0.1%

Statistical and Systematical Uncertainties

Source	E248	PiENu
Statistical	0.0028	0.0005
Low E tail	0.0025	0.0003
Acceptance difference	0.0011	0.0003
π⁺ lifetime	0.0009	0.0002
Others	0.0011	0.0003
Total	0.0047	0.0006

Statistical and Systematical Uncertainties

Source	E248	PiENu
Statistical	0.0028	0.0005
Low E tail	0.0025	0.0003
Acceptance difference	0.0011	0.0003
π⁺ lifetime	0.0009	0.0002
Others	0.0011	0.0003
Total	0.0047	0.0006

Limited by: - Statistics

- Decays in Flight

The Low Energy Tail

Origin of the tail:

Not all the energy is captured in NaI
 Radiative pion decays (~0.5%)

Consequences for a precise BR measurement:

- The low energy tail extends underneath $\pi \rightarrow \mu \rightarrow e$
- Need to know precisely the NaI lineshape
- Experimental and MC investigations needed

Luca Doria

The NaI Crystal "BiNa"

Luca Doria

The Low Energy Tail

Optimal Procedure: Try to look at the low energy tail directly!

- Try to not rely on response function measurements or simulations
- Suppress $\pi \rightarrow \mu \rightarrow e$ events:
 - Fast (500MHz) pulse digitization in the target
 - Select fast decaying pions (t~<26ns)
 - Already used in the "old" PiENu experiment: very effective.

The Low Energy Tail

Optimal Procedure: Try to look at the low energy tail directly!

- Try to not rely on response function measurements or simulations
- Suppress $\pi \rightarrow \mu \rightarrow e$ events:
 - Fast (500MHz) pulse digitization in the target
 - Select fast decaying pions (t~<26ns)
 - Already used in the "old" PiENu experiment: very effective.

Dedicated Measurement Campaign planned

- Positron beam
- Hit the crystal's face varying:
 - Angle (polarheta and azimuthal ϕ)
 - Positions
 - Beam Momentum
- Experimental parameterization of the response
- Convolute with decay positrons energy
- Note: beam momentum spread contribution

Geant4 Simulation

Low energy tail extending to very low energies

Full simulation of the EM shower in the crystal :

electrons / positrons / photons

Compton, Photoeffect, Pair Production, Ionization, Bhabha/Moller scattering,...

First Lineshape Measurements

Measurements at different Beam Momenta

Unexpected peaks appearing at lower energies

- Measurements at various beam momenta/magnet/slits settings
- Measurements at various angles and entrance positions
- Limited material in front of the crystal (only one scintillator)
- The peaks are not from instrumental origin

MC Including Hadronic Interactions

- MC predicts the presence of structures
- Connected to hadronic processes (QGSP_BERT physics list)
- MC has to be improved for exactly reproducing the lineshape
- The low energy tail increases by ~0.8%

Nuclear Photoabsorption

$$\sigma(\omega) = 4\pi \alpha \omega \int d\Psi_f |\langle \Psi_f | D | \Psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

- Shower photons can be captured by Iodine nuclei
- Sodium gives a negligible contribution (>15 times less)
- Photoabsorption is mainly followed by neutron emission

Neutrons in NaI

TRIUMF

Separation Energies

$$I_{53}^{127} \to I_{53}^{126} + n$$
 $E_{1n} = 9.14 \, MeV$

$$I_{53}^{127} \rightarrow I_{53}^{125} + 2n$$
 $E_{2n} = 16.3 MeV$

• If the neutron(s) escape the crystal without depositing any energy, at least E_{1n} or E_{2n} is not observed.

Energy Deposition Mechanisms

Elastic Scattering

Inelastic scattering

Neutron absorption

Luca Doria

Events with at least one Nuclear Photoabsorption

PiENu is a high precision experiment

Effect observed for the first time in a NaI calorimeter

The PiENu Experiment is ready for taking data!

The PiENu Experiment is ready for taking data!

Thank You for the Attention!